
OpenAVR - introduction

OpenAVR is a simple 8-bit CPU compatible with Atmel AVR architecture. It supports full instruction

set of ATTiny48 MCU, however, does not support interrupts. The OpenAVR bundle consists of the

following components:

 A sample firmware that repeatedly sets LED register (=PORTB) to 0x55 and 0xAA.

 A VisualHDL project with THDL++ source code. The project has 2 configurations:

o A simulator-based configuration. Run it then look at uut\LEDs signal.

o An FPGA-targeted configuration. You can build & program it to a Xilinx Spartan3

evaluation board (XC3S700AN FPGA), or use any other board and FPGA by

customizing the synthesize_hardware statement in MCU.thp.

The OpenAVR example demonstrates the use of policy classes to design flexible hardware. The policy

classes are used to:

 List the peripherals of the microcontroller and specify register locations

 Define CPU instructions

 Define ALU operations

THDL++
THDL++ is a language that combines VHDL semantics and C++ syntax. Essentially, you can take a

VHDL design, replace begin/end with { }, move “architecture” contents inside “entity”, replace VHDL

operations like “or” to C operations like “|” and you’ll get a valid THDL++ entity.

However, unlike VHDL, THDL++ allows to use inheritance, “foreach” semantics, enhanced generics

and many more features improving user experience. You can read more about THDL++ here:

http://visualhdl.sysprogs.org/tutorial/

Policy classes
A policy class is essentially a collection of constants, functions and typedefs. It extends the concept of

generics used in VHDL and other similar languages. We will explain the policy class concept on an

example from the OpenAVR project.

Consider 2 different AVR-based MCUs: ATTiny26 and ATTiny48. Each of them has a different RAM

starting address, and set of common hardware registers:

Parameter ATTiny26 ATTiny48

RAM starting address 0x60 0x100

RAM size 0x80 0x100

ROM size 0x100 0x100

SPL address 0x5D

SPH address 0x5E

SREG address 0x5F

PORTB address 0x25

http://visualhdl.sysprogs.org/tutorial/

If we want to avoid copy-pasting the code to switch between ATTiny26 and ATTiny48 emulation,

classical VHDL provides 2 ways of doing this:

 Making 7 generic parameters

o Advantage: we specify parameters (e.g. RAM size) when MCU entity is instantiated.

Thus, can use one inside a simulator testbench, another in a simple FPGA testbench,

and third one in production.

o Disadvantage: propagating generics to a nested entity is cumbersome. Adding new

generics requires modifying tons of code.

 Making a package with 7 constants

o Advantage: no explicit generic propagation (nested generic maps).

o Disadvantage: package name is specified in entity declaration, not in instantiation.

I.e. having one testbench for ATTiny26 and another for ATTiny48 requires constantly

switching package name in VHDL sources.

There is one more general disadvantage: VHDL offers no way of expressing the hierarchical structure

of the MCU definitions (e.g. ATTiny26 and ATTiny48 both share some common properties of ATTiny

family). Thus, extra copy-pasting is required.

As mentioned before, a policy class is a collection of constants and definitions. It’s similar to a C++

class consisting only of static members. E.g. the information about MCU types can be represented in

the following way:

Here we have combined all “configuration” information about one MCU into a single policy class (see

MCUs.thp for more details). The MCU entity can use the class as a template argument (i.e. generic):

template <any _MCUType> entity MCUWithROM

{

...

 ComplexRAMWrapper<_MCUType.RAMStart, _MCUType.RAMSize> ...

}

When the entity is instantiated, we specify which MCU policy class to use. E.g.:

MCUWithROM<ATTiny26> uut(...);

class ATTinyBase

const SPL = …

const SPH = …

class ATTiny26

const RAMSize = 0x80;

class ATTiny48

const RAMSize = 0x100;

To use ATTiny48 instead of ATTiny26 in another testbench, simply specify it during instantiation:

MCUWithROM<ATTiny48> uut2(...);

This is similar to specifying the values for 7 VHDL generics, however, the form is much more compact

and a lot of copy-pasting is avoided.

The rest of this document explains how policy classes are used in other parts of OpenAVR.

The generic ALU
The ALU is implemented inside ALU.thp. The input/output ports of the ALU entity are shown below:

The most important inputs are OperationCode, op1, op2 and flags. In turn, the outputs are result

and NewFlags. The information about ALU operations is defined in a policy class tree originating from

OperationBase. Every policy class defines the following members:

 OperationCode constant.

 SetFlags() function.

 ComputeResult() function.

The ALU operations are defined using inheritance. E.g. “LogicalOperation” class defines how flags are

set for logical operations and classes like And, Eor and Or inherit it and only define the

ComputeResult function.

The core of the ALU is the operation process (THDL++ processes have VHDL semantics) that is

defined in a generic way:

For each supported ALU operation

 If (OperationCode == code defined by the current operation)

 Set result and flags, as defined by operation.

Adding new ALU operations, or modifying their internal behavior is done by modifying supportedOps

list and does not require changing the processes and signals.

The generic instruction decoder
Instruction decoding is implemented similarly to ALU. Instructions are defined in a tree of policy

classes (InstructionDefinitions.thp) and the actual decoding is done inside the decode process

(CPU.thp).

Every instruction is represented by a class that defines a Match() function and various helper

functions (e.g. IsRAMWritten()) that describe the instruction behavior.

Multi-cycle instructions do not define the helper constants and functions. Instead they contain a list

called Stages that lists stage policy classes. A stage policy class acts like a “sub-instruction” and

defines all helper functions inside itself.

Thus, a single-stage instruction class does not contain the Stages definition. Instead, it is treated as a

stage class itself (i.e. defines helper functions and constants). This is captured inside the

InstructionStages function:

 any InstructionStages(any insn)

 {

 if (__defined(insn.Stages))

 return insn.Stages;

 else

 return insn;

 }

The decode process implements the following functionality:

For each supported instruction

 If currently loaded instruction matches it

 If it’s a single-stage instruction, select first stage

 If it’s a multi-stage instruction, select stage based on CurrentStage signal

 Set all decoded signals as defined in the stage class

Adding or removing supported instructions simply requires changing the Instructions list.

Note that THDL++ uses VHDL semantics. Thus, any subsequent signal writes in a process will

overwrite its value. This is used to handle “unknown instruction” condition:

 A special UnknownInstruction class is defined. Its Match() always returns true.

 When iterating through supported instructions, UnknownInstruction is always checked first.

Thus, if no instruction matches the currently loaded instruction word, the default behavior defined in

UnknownInstruction will take place.

Instruction stages are efficiently reused. E.g. the PushPopInstruction instruction class has a template

argument “_ReplacePCH” that specifies whether the high-order byte of PC register is replaced with

the popped value. It is always false for the actual push/pop instruction. However, the RetInstruction

reuses those stage definitions setting _ReplacePCH to true. This reflects the fact that “ret” is

essentially a set of two “pop” instructions where the result output is routed to PC.

