Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private variables
TimHandle
sConfig
sSlaveConfig
uwIC2Value
uwDutyCycle
uwFrequency
Private function prototypes
main()
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *)
Error_Handler()
SystemClock_Config()
Files
loading...
CodeScopeSTM32 Libraries and SamplesTIM_PWMInputSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file TIM/TIM_PWMInput/Src/main.c * @author MCD Application Team * @brief This example shows how to use the TIM peripheral to measure the * frequency and duty cycle of an external signal. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup TIM_PWMInput * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Timer handler declaration */ TIM_HandleTypeDef TimHandle; /* Timer Input Capture Configuration Structure declaration */ TIM_IC_InitTypeDef sConfig; /* Slave configuration structure */ TIM_SlaveConfigTypeDef sSlaveConfig; /* Captured Value */ __IO uint32_t uwIC2Value = 0; /* Duty Cycle Value */ __IO uint32_t uwDutyCycle = 0; /* Frequency Value */ __IO uint32_t uwFrequency = 0; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED3 */ BSP_LED_Init(LED3); /*##-1- Configure the TIM peripheral #######################################*/ /* --------------------------------------------------------------------------- TIM1 configuration: PWM Input mode In this example TIM1 input clock (TIM1CLK) is set to APB2 clock x 2, since APB2 prescaler is 2. TIM1CLK = APB2CLK*2 APB2CLK = HCLK/4 => TIM1CLK = HCLK /2 = SystemCoreClock/4 External Signal Frequency = TIM1 counter clock / TIM1_CCR2 in Hz. External Signal DutyCycle = (TIM1_CCR1*100)/(TIM1_CCR2) in %. --------------------------------------------------------------------------- *//* ... */ /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIMx peripheral as follows: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up *//* ... */ TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = 0; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.RepetitionCounter = 0; TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { ... } /*##-2- Configure the Input Capture channels ###############################*/ /* Common configuration */ sConfig.ICPrescaler = TIM_ICPSC_DIV1; sConfig.ICFilter = 0; /* Configure the Input Capture of channel 1 */ sConfig.ICPolarity = TIM_ICPOLARITY_FALLING; sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI; if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { ... } /* Configure the Input Capture of channel 2 */ sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { ... } /*##-3- Configure the slave mode ###########################################*/ /* Select the slave Mode: Reset Mode */ sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET; sSlaveConfig.InputTrigger = TIM_TS_TI2FP2; sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED; sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1; sSlaveConfig.TriggerFilter = 0; if (HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK) { ... } /*##-4- Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { ... } /*##-5- Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { ... } while (1) { }while (1) { ... } }{ ... } /** * @brief Input Capture callback in non blocking mode * @param htim : TIM IC handle * @retval None *//* ... */ void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { /* Get the Input Capture value */ uwIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); if (uwIC2Value != 0) { /* Duty cycle computation */ uwDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1)) * 100) / uwIC2Value; /* uwFrequency computation TIM1 counter clock = (RCC_Clocks.HCLK_Frequency) *//* ... */ uwFrequency = (HAL_RCC_GetHCLKFreq()/2) / uwIC2Value; }if (uwIC2Value != 0) { ... } else { uwDutyCycle = 0; uwFrequency = 0; }else { ... } }if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { ... } }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while (1) { }while (1) { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; HAL_RCC_OscConfig(&RCC_OscInitStruct); /* Activate the Over-Drive mode */ HAL_PWREx_EnableOverDrive(); /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers *//* ... */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */ #endif /** * @} *//* ... */ /** * @} *//* ... */