Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
<anonymous enum>
#define SPI_ACK_BYTES
#define SPI_NACK_BYTES
#define SPI_TIMEOUT_MAX
#define SPI_SLAVE_SYNBYTE
#define SPI_MASTER_SYNBYTE
#define ADDRCMD_MASTER_READ
#define ADDRCMD_MASTER_WRITE
#define CMD_LENGTH
#define DATA_LENGTH
#define MASTER_BOARD
Private variables
SpiHandle
aTxMasterBuffer
aTxSlaveBuffer
aRxBuffer
wTransferState
Private function prototypes
main()
Master_Synchro()
SystemClock_Config()
HAL_SPI_ErrorCallback(SPI_HandleTypeDef *)
Error_Handler()
Buffercmp(uint8_t *, uint8_t *, uint16_t)
Flush_Buffer(uint8_t *, uint16_t)
LED_Toggle(Led_TypeDef)
Files
loading...
CodeScopeSTM32 Libraries and SamplesSPI_FullDuplex_AdvComPollingSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file SPI/SPI_FullDuplex_AdvComPolling/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F4xx SPI HAL API to transmit * and receive a data buffer with a communication process based on * Polling transfer. * The communication is done using 2 Boards. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup SPI_FullDuplex_AdvComPolling * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ enum { TRANSFER_WAIT, TRANSFER_COMPLETE, TRANSFER_ERROR ...}; #define SPI_ACK_BYTES 0xA5A5 #define SPI_NACK_BYTES 0xDEAD #define SPI_TIMEOUT_MAX 0x1000 #define SPI_SLAVE_SYNBYTE 0x53 #define SPI_MASTER_SYNBYTE 0xAC /* Defines used for transfer communication */ #define ADDRCMD_MASTER_READ ((uint16_t)0x1234) #define ADDRCMD_MASTER_WRITE ((uint16_t)0x5678) #define CMD_LENGTH ((uint16_t)0x0004) #define DATA_LENGTH ((uint16_t)0x0020) /* Private macro -------------------------------------------------------------*/ /* Uncomment this line to use the board as master, if not it is used as slave */ #define MASTER_BOARD 10 defines /* Private variables ---------------------------------------------------------*/ /* SPI handler declaration */ SPI_HandleTypeDef SpiHandle; /* Buffer used for transmission */ uint8_t aTxMasterBuffer[] = "SPI - MASTER - Transmit message"; uint8_t aTxSlaveBuffer[] = "SPI - SLAVE - Transmit message "; /* Buffer used for reception */ uint8_t aRxBuffer[DATA_LENGTH]; /* transfer state */ __IO uint32_t wTransferState = TRANSFER_WAIT; Private variables /* Private function prototypes -----------------------------------------------*/ #ifdef MASTER_BOARD static void Master_Synchro(void); #else static void Slave_Synchro(void); #endif static void SystemClock_Config(void); static void Error_Handler(void); static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength); static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength); static void LED_Toggle(Led_TypeDef Led);Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None *//* ... */ int main(void) { #ifndef MASTER_BOARD uint16_t addrcmd = 0; uint16_t comlength = 0;/* ... */ #endif uint8_t paddrcmd[CMD_LENGTH] = {0}; uint16_t ackbytes = 0x0000; /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization: global MSP (MCU Support Package) initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED1, LED2 and LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED2); BSP_LED_Init(LED3); /*##-1- Configure the SPI peripheral #######################################*/ /* Set the SPI parameters */ SpiHandle.Instance = SPIx; SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; SpiHandle.Init.Direction = SPI_DIRECTION_2LINES; SpiHandle.Init.CLKPhase = SPI_PHASE_1EDGE; SpiHandle.Init.CLKPolarity = SPI_POLARITY_LOW; SpiHandle.Init.DataSize = SPI_DATASIZE_8BIT; SpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB; SpiHandle.Init.TIMode = SPI_TIMODE_DISABLE; SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; SpiHandle.Init.CRCPolynomial = 7; SpiHandle.Init.NSS = SPI_NSS_SOFT; #ifdef MASTER_BOARD SpiHandle.Init.Mode = SPI_MODE_MASTER; #else SpiHandle.Init.Mode = SPI_MODE_SLAVE; #endif /* MASTER_BOARD */ if(HAL_SPI_Init(&SpiHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_SPI_Init(&SpiHandle) != HAL_OK) { ... } #ifdef MASTER_BOARD /* Configure User push-button button */ BSP_PB_Init(BUTTON_USER,BUTTON_MODE_GPIO);/* ... */ #endif /* MASTER_BOARD */ /* Infinite loop */ while(1) { #ifdef MASTER_BOARD /* Wait for User push-button press before starting the Communication */ while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET) { BSP_LED_Toggle(LED1); HAL_Delay(100); }while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET) { ... } /* Delay to avoid that possible signal rebound is taken as button release */ HAL_Delay(50); /* Wait for User push-button release before starting the Communication */ while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET) { }while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET) { ... } /* Synchronization between Master and Slave */ Master_Synchro(); /* Receive Data from the Slave ###########################################*/ paddrcmd[0] = (uint8_t) (ADDRCMD_MASTER_READ >> 8); paddrcmd[1] = (uint8_t) ADDRCMD_MASTER_READ; paddrcmd[2] = (uint8_t) (DATA_LENGTH >> 8); paddrcmd[3] = (uint8_t) DATA_LENGTH; /* Send Master READ command to slave */ if(HAL_SPI_Transmit(&SpiHandle, paddrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Transmit(&SpiHandle, paddrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... } /* Before starting a new communication transfer, you need to check the current state of the peripheral; if itÂ’s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Synchronization between Master and Slave */ Master_Synchro(); /* Receive ACK from the Slave */ ackbytes = 0; if(HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Check the received ACK */ if(ackbytes == SPI_ACK_BYTES) { /* Synchronization between Master and Slave */ Master_Synchro(); /* Receive the requested data from the slave */ if(HAL_SPI_Receive(&SpiHandle, aRxBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Receive(&SpiHandle, aRxBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Synchronization between Master and Slave */ Master_Synchro(); /* Send ACK to the Slave */ ackbytes = SPI_ACK_BYTES; if(HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } }if (ackbytes == SPI_ACK_BYTES) { ... } else { /* Transfer error in transmission process */ Error_Handler(); }else { ... } /* Compare received buffer with one expected from slave */ if(Buffercmp((uint8_t*)aTxSlaveBuffer, (uint8_t*)aRxBuffer, CMD_LENGTH)) { /* Transfer error in transmission process */ Error_Handler(); }if (Buffercmp((uint8_t*)aTxSlaveBuffer, (uint8_t*)aRxBuffer, CMD_LENGTH)) { ... } else { /* Turn LED2 on: Reception is correct */ LED_Toggle(LED2); }else { ... } /* Synchronization between Master and Slave */ Master_Synchro(); /* Transmit Data To Slave ################################################*/ paddrcmd[0] = (uint8_t) (ADDRCMD_MASTER_WRITE >> 8); paddrcmd[1] = (uint8_t) ADDRCMD_MASTER_WRITE; paddrcmd[2] = (uint8_t) (DATA_LENGTH >> 8); paddrcmd[3] = (uint8_t) DATA_LENGTH; /* Send Master WRITE command to the slave */ if(HAL_SPI_Transmit(&SpiHandle, paddrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Transmit(&SpiHandle, paddrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Synchronization between Master and Slave */ Master_Synchro(); /* Receive ACK from the Slave */ ackbytes = 0; if(HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Check the received ACK */ if(ackbytes == SPI_ACK_BYTES) { /* Synchronization between Master and Slave */ Master_Synchro(); /* Send the requested data from the slave */ if(HAL_SPI_Transmit(&SpiHandle, aTxMasterBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Transmit(&SpiHandle, aTxMasterBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Synchronization between Master and Slave */ Master_Synchro(); /* Receive ACK from the Slave */ ackbytes = 0; if(HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } }if (ackbytes == SPI_ACK_BYTES) { ... } else { /* Transfer error in transmission process */ Error_Handler(); }else { ... } /* Flush Rx buffer for next transmission */ Flush_Buffer(aRxBuffer, DATA_LENGTH); /* Toggle LED1 */ BSP_LED_Toggle(LED1); /* This delay permit to user to see LED1 toggling*/ HAL_Delay(100); }/* ... */ while (1) { ... }#else /* Synchronization between Master and Slave */ Slave_Synchro(); /* Receive command from Master */ if(HAL_SPI_Receive(&SpiHandle, paddrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Receive(&SpiHandle, paddrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Compute command and required data length */ addrcmd = (uint16_t) ((paddrcmd[0] << 8) | paddrcmd[1]); comlength = (uint16_t) ((paddrcmd[2] << 8) | paddrcmd[3]); /* Check if received command correct */ if(((addrcmd == ADDRCMD_MASTER_READ) || (addrcmd == ADDRCMD_MASTER_WRITE)) && (comlength > 0)) { /* Synchronization between Master and Slave */ Slave_Synchro(); /* Send acknowledge to Master */ ackbytes = SPI_ACK_BYTES; if(HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Check if Master requiring data read or write */ if(addrcmd == ADDRCMD_MASTER_READ) { /* Synchronization between Master and Slave */ Slave_Synchro(); /* Send data to Master */ if(HAL_SPI_Transmit(&SpiHandle, aTxSlaveBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Transmit(&SpiHandle, aTxSlaveBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Synchronization between Master and Slave */ Slave_Synchro(); /* Receive acknowledgement from Master */ ackbytes = 0; if(HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Check acknowledgement */ if(ackbytes != SPI_ACK_BYTES) { Error_Handler(); }if (ackbytes != SPI_ACK_BYTES) { ... } }if (addrcmd == ADDRCMD_MASTER_READ) { ... } else if(addrcmd == ADDRCMD_MASTER_WRITE) { /* Synchronization between Master and Slave */ Slave_Synchro(); /* Receive data from Master */ if(HAL_SPI_Receive(&SpiHandle, aRxBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Receive(&SpiHandle, aRxBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* Synchronization between Master and Slave */ Slave_Synchro(); /* Send acknowledgement to Master */ ackbytes = SPI_ACK_BYTES; if(HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } /* In case, Master has sent data, compare received buffer with one expected */ if(Buffercmp((uint8_t*)aTxMasterBuffer, (uint8_t*)aRxBuffer, DATA_LENGTH)) { /* Transfer error in transmission process */ Error_Handler(); }if (Buffercmp((uint8_t*)aTxMasterBuffer, (uint8_t*)aRxBuffer, DATA_LENGTH)) { ... } else { /* Toggle LED2 on: Reception is correct */ LED_Toggle(LED2); }else { ... } }else if (addrcmd == ADDRCMD_MASTER_WRITE) { ... } }if (((addrcmd == ADDRCMD_MASTER_READ) || (addrcmd == ADDRCMD_MASTER_WRITE)) && (comlength > 0)) { ... } else { /* Synchronization between Master and Slave */ Slave_Synchro(); /* Send acknowledgement to Master */ ackbytes = SPI_NACK_BYTES; if(HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { Error_Handler(); }if (HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } Error_Handler(); }else { ... } /* Flush Rx buffer for next transmission */ Flush_Buffer(aRxBuffer, DATA_LENGTH); }/* ... */ main (void) { ... }#endif } #ifdef MASTER_BOARD /** * @brief Master Synchronization with Slave. * @param None * @retval None *//* ... */ static void Master_Synchro(void) { uint8_t txackbytes = SPI_MASTER_SYNBYTE, rxackbytes = 0x00; do { /* Call SPI write function to send command to slave */ if(HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbytes, (uint8_t *)&rxackbytes, 1, HAL_MAX_DELAY) != HAL_OK) { Error_Handler(); }if (HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbytes, (uint8_t *)&rxackbytes, 1, HAL_MAX_DELAY) != HAL_OK) { ... } while(HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) {}while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY) { ... } ...}while(rxackbytes != SPI_SLAVE_SYNBYTE); }{ ... } #else/* ... */ /** * @brief Slave synchronization with Master * @param None * @retval None *//* ... */ static void Slave_Synchro(void) { uint8_t txackbyte = SPI_SLAVE_SYNBYTE, rxackbyte = 0x00; do { if (HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbyte, (uint8_t *)&rxackbyte, 1, HAL_MAX_DELAY) != HAL_OK) { Error_Handler(); }if (HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbyte, (uint8_t *)&rxackbyte, 1, HAL_MAX_DELAY) != HAL_OK) { ... } ...} while (rxackbyte != SPI_MASTER_SYNBYTE); }Slave_Synchro (void) { ... } /* ... */#endif /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 100000000 * HCLK(Hz) = 100000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 200 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 2 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 200; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 2; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers *//* ... */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } }{ ... } /** * @brief SPI error callbacks. * @param hspi: SPI handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None *//* ... */ void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) { /* call error handler */ Error_Handler(); }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while (1) { }while (1) { ... } }{ ... } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 *//* ... */ static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; }if ((*pBuffer1) != *pBuffer2) { ... } pBuffer1++; pBuffer2++; }while (BufferLength--) { ... } return 0; }{ ... } /** * @brief Flushes the buffer * @param pBuffer: buffers to be flushed. * @param BufferLength: buffer's length * @retval None *//* ... */ static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength) { while (BufferLength--) { *pBuffer = 0; pBuffer++; }while (BufferLength--) { ... } }{ ... } /** * @brief Toggles the selected LED. * @param Led: Specifies the Led to be toggled. * This parameter can be one of following parameters: * @arg LED1 * @arg LED2 * @arg LED3 *//* ... */ static void LED_Toggle(Led_TypeDef Led) { BSP_LED_On(Led); HAL_Delay(500); BSP_LED_Off(Led); }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */