Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private define
#define TRANSMITTER_BOARD
Private variables
UartHandle
UartReady
UserButtonStatus
aTxBuffer
aRxBuffer
Private function prototypes
main()
SystemClock_Config()
HAL_UART_TxCpltCallback(UART_HandleTypeDef *)
HAL_UART_RxCpltCallback(UART_HandleTypeDef *)
HAL_UART_ErrorCallback(UART_HandleTypeDef *)
HAL_GPIO_EXTI_Callback(uint16_t)
Buffercmp(uint8_t *, uint8_t *, uint16_t)
Error_Handler()
Files
loading...
CodeScopeSTM32 Libraries and SamplesUART_TwoBoards_ComDMASrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file UART/UART_TwoBoards_ComDMA/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use UART HAL API to transmit * and receive a data buffer with a communication process based on * DMA transfer. * The communication is done using 2 Boards. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup UART_TwoBoards_ComDMA * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define TRANSMITTER_BOARD Private define /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declaration */ UART_HandleTypeDef UartHandle; __IO ITStatus UartReady = RESET; __IO uint32_t UserButtonStatus = 0; /* set to 1 after User Button interrupt */ /* Buffer used for transmission */ uint8_t aTxBuffer[] = " ****UART_TwoBoards communication based on DMA**** ****UART_TwoBoards communication based on DMA**** ****UART_TwoBoards communication based on DMA**** "; /* Buffer used for reception */ uint8_t aRxBuffer[RXBUFFERSIZE]; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization *//* ... */ HAL_Init(); /* Configure the system clock to 100 MHz */ SystemClock_Config(); /* Configure LED1, LED2 and LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED2); BSP_LED_Init(LED3); #ifdef TRANSMITTER_BOARD /* Configure User push-button in Interrupt mode */ BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI); /* Wait for User push-button press before starting the Communication. In the meantime, LED_GREEN is blinking *//* ... */ while(UserButtonStatus == 0) { /* Toggle LED_GREEN*/ BSP_LED_Toggle(LED_GREEN); HAL_Delay(100); }while (UserButtonStatus == 0) { ... } BSP_LED_Off(LED_GREEN); /* ... */ #endif /* TRANSMITTER_BOARD */ /*##-1- Configure the UART peripheral ######################################*/ /* Put the USART peripheral in the Asynchronous mode (UART Mode) */ /* UART configured as follows: - Word Length = 8 Bits - Stop Bit = One Stop bit - Parity = None - BaudRate = 9600 baud - Hardware flow control disabled (RTS and CTS signals) *//* ... */ UartHandle.Instance = USARTx; UartHandle.Init.BaudRate = 9600; UartHandle.Init.WordLength = UART_WORDLENGTH_8B; UartHandle.Init.StopBits = UART_STOPBITS_1; UartHandle.Init.Parity = UART_PARITY_NONE; UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; UartHandle.Init.Mode = UART_MODE_TX_RX; if(HAL_UART_DeInit(&UartHandle) != HAL_OK) { Error_Handler(); }if (HAL_UART_DeInit(&UartHandle) != HAL_OK) { ... } if(HAL_UART_Init(&UartHandle) != HAL_OK) { Error_Handler(); }if (HAL_UART_Init(&UartHandle) != HAL_OK) { ... } #ifdef TRANSMITTER_BOARD /* The board sends the message and expects to receive it back */ /* DMA is programmed for reception before starting the transmission, in order to be sure DMA Rx is ready when board 2 will start transmitting *//* ... */ /*##-2- Program the Reception process #####################################*/ if(HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { Error_Handler(); }if (HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { ... } /*##-3- Start the transmission process #####################################*/ /* While the UART in reception process, user can transmit data through "aTxBuffer" buffer *//* ... */ if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { Error_Handler(); }if (HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { ... } /*##-4- Wait for the end of the transfer ###################################*/ while (UartReady != SET) { }while (UartReady != SET) { ... } /* Reset transmission flag */ UartReady = RESET; /* ... */ #else /* The board receives the message and sends it back */ /*##-2- Put UART peripheral in reception process ###########################*/ if(HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { Error_Handler(); }if (HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { ... } /*##-3- Wait for the end of the transfer ###################################*/ /* While waiting for message to come from the other board, LED_GREEN is blinking according to the following pattern: a double flash every half-second *//* ... */ while (UartReady != SET) { BSP_LED_On(LED_GREEN); HAL_Delay(100); BSP_LED_Off(LED_GREEN); HAL_Delay(100); BSP_LED_On(LED_GREEN); HAL_Delay(100); BSP_LED_Off(LED_GREEN); HAL_Delay(500); }while (UartReady != SET) { ... } /* Reset transmission flag */ UartReady = RESET; BSP_LED_Off(LED_GREEN); /*##-4- Start the transmission process #####################################*/ /* While the UART in reception process, user can transmit data through "aTxBuffer" buffer *//* ... */ if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { Error_Handler(); }if (HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { ... } /* ... */ #endif /* TRANSMITTER_BOARD */ /*##-5- Wait for the end of the transfer ###################################*/ while (UartReady != SET) { }while (UartReady != SET) { ... } /* Reset transmission flag */ UartReady = RESET; /*##-6- Compare the sent and received buffers ##############################*/ if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE)) { Error_Handler(); }if (Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE)) { ... } /* Turn on LED_GREEN if test passes then enter infinite loop */ BSP_LED_On(LED_GREEN); /* Infinite loop */ while (1) { }while (1) { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 100000000 * HCLK(Hz) = 100000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 200 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 2 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 200; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 2; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers *//* ... */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } }{ ... } /** * @brief Tx Transfer completed callback * @param UartHandle: UART handle. * @note This example shows a simple way to report end of DMA Tx transfer, and * you can add your own implementation. * @retval None *//* ... */ void HAL_UART_TxCpltCallback(UART_HandleTypeDef *UartHandle) { /* Set transmission flag: transfer complete */ UartReady = SET; #ifdef TRANSMITTER_BOARD /* Turn LED_BLUE on: Transfer in transmission process is correct */ BSP_LED_On(LED_BLUE); /* ... */ #else /* Turn LED_BLUE off: Transfer in transmission process is correct */ BSP_LED_Off(LED_BLUE); /* ... */ #endif /* TRANSMITTER_BOARD */ }{ ... } /** * @brief Rx Transfer completed callback * @param UartHandle: UART handle * @note This example shows a simple way to report end of DMA Rx transfer, and * you can add your own implementation. * @retval None *//* ... */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) { /* Set transmission flag: transfer complete */ UartReady = SET; #ifdef TRANSMITTER_BOARD /* Turn LED_BLUE off: Transfer in reception process is correct */ BSP_LED_Off(LED_BLUE); /* ... */ #else /* Turn LED_BLUE on: Transfer in reception process is correct */ BSP_LED_On(LED_BLUE);/* ... */ #endif /* TRANSMITTER_BOARD */ }{ ... } /** * @brief UART error callbacks * @param UartHandle: UART handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None *//* ... */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle) { Error_Handler(); }{ ... } /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None *//* ... */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if(GPIO_Pin == USER_BUTTON_PIN) { UserButtonStatus = 1; }if (GPIO_Pin == USER_BUTTON_PIN) { ... } }{ ... } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 *//* ... */ static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; }if ((*pBuffer1) != *pBuffer2) { ... } pBuffer1++; pBuffer2++; }while (BufferLength--) { ... } return 0; }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Turn LED_RED on */ BSP_LED_On(LED_RED); while(1) { }while (1) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t* file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */