Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private define
#define TIM_FREQUENCIES_NB
#define TIM_DUTYCYCLE_NB
#define TIM3_ARR_MAX
Private variables
htim3
htim2
sConfig
sSlaveConfig
uwIC2Value
uwDutyCycle
uwFrequency
uhPrescalerValue
iFrequency
aFrequency
iDutyCycle
aDutyCycle
Private function prototypes
main()
WaveGeneration_Init()
UserButton_Init()
UserButton_Callback()
TimerCaptureCompare_Ch2_Callback()
Error_Handler()
SystemClock_Config()
Files
loading...
CodeScopeSTM32 Libraries and SamplesTIM_PWMInputSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file TIM/TIM_PWMInput/Src/main.c * @author MCD Application Team * @brief This example shows how to use the TIM peripheral to measure the * frequency and duty cycle of an external signal. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup TIM_PWMInput * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Number of frequencies */ #define TIM_FREQUENCIES_NB 6 #define TIM_DUTYCYCLE_NB 2 /* TIM3_ARR register maximum value */ #define TIM3_ARR_MAX (uint32_t)0xFFFF Private define/* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Timer handler declaration */ TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim2; /* Timer Input Capture Configuration Structure declaration */ TIM_IC_InitTypeDef sConfig; /* Slave configuration structure */ TIM_SlaveConfigTypeDef sSlaveConfig; /* Captured Value */ __IO uint32_t uwIC2Value = 0; /* Duty Cycle Value */ __IO uint32_t uwDutyCycle = 0; /* Frequency Value */ __IO uint32_t uwFrequency = 0; /* Counter Prescaler value */ uint32_t uhPrescalerValue = 0; static uint8_t iFrequency = 0; /* Frequency index *//* Frequency table */ static uint32_t aFrequency[TIM_FREQUENCIES_NB] = { 2000, /* 2 kHz */ 2000, /* 2 kHz */ 3000, /* 3 kHz */ 3000, /* 3 kHz */ 4000, /* 4 kHz */ 4000, /* 4 kHz */ ...}; /* Frequency index */ static uint8_t iDutyCycle = 0; static uint32_t aDutyCycle[TIM_DUTYCYCLE_NB] = { 2, /* 50% */ 4, /* 25% */ ...}; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); static void UserButton_Init(void); static void WaveGeneration_Init(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization *//* ... */ HAL_Init(); /* Configure the system clock to 100 MHz */ SystemClock_Config(); /* Initialize all configured peripherals */ /* Initialize push button */ UserButton_Init(); /* Initialize TIM2 for output waveform generation */ WaveGeneration_Init(); /* Configure LED2 */ BSP_LED_Init(LED2); /* Start Input waveform generation */ if (HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1) != HAL_OK) { /* PWM Generation Error */ Error_Handler(); }if (HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1) != HAL_OK) { ... } /*##-1- Configure the TIM peripheral #######################################*/ /* --------------------------------------------------------------------------- TIM3 configuration: PWM Input mode In this example TIM3 input clock (TIM3CLK) is set to APB1 clock (PCLK1), since APB1 prescaler is 1. TIM3CLK = PCLK1 PCLK1 = HCLK => TIM3CLK = HCLK = SystemCoreClock External Signal Frequency = TIM3 counter clock / TIM3_CCR2 in Hz. External Signal DutyCycle = (TIM3_CCR1*100)/(TIM3_CCR2) in %. --------------------------------------------------------------------------- *//* ... */ /* Set TIMx instance */ htim3.Instance = TIMx; /* Initialize TIMx peripheral as follows: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up *//* ... */ htim3.Init.Period = 0xFFFF; htim3.Init.Prescaler = 0; htim3.Init.ClockDivision = 0; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; if (HAL_TIM_IC_Init(&htim3) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_TIM_IC_Init(&htim3) != HAL_OK) { ... } /*##-2- Configure the Input Capture channels ###############################*/ /* Common configuration */ sConfig.ICPrescaler = TIM_ICPSC_DIV1; sConfig.ICFilter = 0; /* Configure the Input Capture of channel 1 */ sConfig.ICPolarity = TIM_ICPOLARITY_FALLING; sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI; if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfig, TIM_CHANNEL_1) != HAL_OK) { ... } /* Configure the Input Capture of channel 2 */ sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfig, TIM_CHANNEL_2) != HAL_OK) { ... } /*##-3- Configure the slave mode ###########################################*/ /* Select the slave Mode: Reset Mode */ sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET; sSlaveConfig.InputTrigger = TIM_TS_TI2FP2; sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED; sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1; sSlaveConfig.TriggerFilter = 0; if (HAL_TIM_SlaveConfigSynchronization(&htim3, &sSlaveConfig) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_SlaveConfigSynchronization(&htim3, &sSlaveConfig) != HAL_OK) { ... } /*##-4- Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2) != HAL_OK) { ... } /*##-5- Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1) != HAL_OK) { ... } while (1) { }while (1) { ... } }{ ... } /** * @brief TIM2 is used to generate an output waveform * (instead of using a function generator) * @param None * @retval None *//* ... */ void WaveGeneration_Init(void) { TIM_MasterConfigTypeDef sMasterConfig; TIM_OC_InitTypeDef sConfigOC; htim2.Instance = TIM2; htim2.Init.Prescaler = uhPrescalerValue; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = (SystemCoreClock/1)/aFrequency[0]; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; HAL_TIM_PWM_Init(&htim2); sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = ((SystemCoreClock/1)/aFrequency[0])/aDutyCycle[0]; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1); }{ ... } /** * @brief Init GPIO EXTI for push button * @param None * @retval None *//* ... */ void UserButton_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); /*Configure GPIO pin : UserButton_Pin */ GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI15_10_IRQn, 2, 0); HAL_NVIC_EnableIRQ(EXTI15_10_IRQn); }{ ... } /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None *//* ... */ void UserButton_Callback() { /* Set new PWM signal frequency and duty cycle*/ iFrequency = (iFrequency + 1) % TIM_FREQUENCIES_NB; iDutyCycle = (iDutyCycle + 1) % TIM_DUTYCYCLE_NB; /* Set the auto-reload value to have the requested frequency */ /* Frequency = TIM2CLK / (ARR + 1) = SystemCoreClock / (ARR + 1) */ LL_TIM_SetAutoReload(TIM2, __LL_TIM_CALC_ARR(SystemCoreClock/1, LL_TIM_GetPrescaler(TIM2), aFrequency[iFrequency])); /* Set duty cycle */ LL_TIM_OC_SetCompareCH1(TIM2, (LL_TIM_GetAutoReload(TIM2) / aDutyCycle[iDutyCycle])); }{ ... } /** * @brief Input Capture callback in non blocking mode * @param htim : TIM IC handle * @retval None *//* ... */ void TimerCaptureCompare_Ch2_Callback() { /* Get the Input Capture value */ uwIC2Value = LL_TIM_IC_GetCaptureCH2(TIM3); if (uwIC2Value != 0) { /* Duty cycle computation */ uwDutyCycle = (LL_TIM_IC_GetCaptureCH1(TIM3) * 100) / uwIC2Value; /* uwFrequency computation TIM3 freq = SystemCoreClock *//* ... */ uwFrequency = SystemCoreClock / (1*uwIC2Value); }if (uwIC2Value != 0) { ... } else { uwDutyCycle = 0; uwFrequency = 0; }else { ... } }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Turn LED2 on */ BSP_LED_On(LED2); while (1) { }while (1) { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 100000000 * HCLK(Hz) = 100000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSI Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 400 * PLL_P = 4 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSI Oscillator and activate PLL with HSI as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 400; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 7; if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); }if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers *//* ... */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK) { Error_Handler(); }if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */ #endif /** * @} *//* ... */ /** * @} *//* ... */