Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private define
#define ADC_CALIBRATION_TIMEOUT_MS
#define ADC_ENABLE_TIMEOUT_MS
#define ADC_DISABLE_TIMEOUT_MS
#define ADC_STOP_CONVERSION_TIMEOUT_MS
#define ADC_CONVERSION_TIMEOUT_MS
#define VDDA_APPLI
#define ADC_CONVERTED_DATA_BUFFER_SIZE
#define VAR_CONVERTED_DATA_INIT_VALUE
#define TIMER_FREQUENCY
#define TIMER_FREQUENCY_RANGE_MIN
#define TIMER_PRESCALER_MAX_VALUE
Private variables
aADCxConvertedData
aADCxConvertedData_Voltage_mVolt
ubDmaTransferStatus
Private function prototypes
main()
Configure_DMA()
Configure_TIM_TimeBase_ADC_trigger()
Configure_ADC()
Activate_ADC()
LED_Init()
LED_On()
LED_Off()
LED_Blinking(uint32_t)
UserButton_Init()
SystemClock_Config()
UserButton_Callback()
AdcDmaTransferComplete_Callback()
AdcDmaTransferHalf_Callback()
AdcDmaTransferError_Callback()
AdcGrpRegularOverrunError_Callback()
Files
loading...
CodeScopeSTM32 Libraries and SamplesADC_SingleConversion_TriggerTimer_DMASrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file Examples_LL/ADC/ADC_SingleConversion_TriggerTimer_DMA/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral to perform * a single ADC conversion of a channel, at each trigger event * from timer. * Conversion data are transferred by DMA into a table, * indefinitely (circular mode). * This example is based on the STM32F4xx ADC LL API; * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_LL_Examples * @{ *//* ... */ /** @addtogroup ADC_SingleConversion_TriggerTimer_DMA * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of ADC hardware constraints delays */ /* Note: Only ADC IP HW delays are defined in ADC LL driver driver, */ /* not timeout values: */ /* Timeout values for ADC operations are dependent to device clock */ /* configuration (system clock versus ADC clock), */ /* and therefore must be defined in user application. */ /* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ /* values definition. */ /* Timeout values for ADC operations. */ /* (enable settling time, disable settling time, ...) */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescalers. */ /* Example of profile very low frequency : ADC clock frequency 36MHz */ /* prescaler 2, sampling time 56 ADC clock cycles, resolution 12 bits. */ /* - ADC enable time: maximum delay is 3 us */ /* (refer to device datasheet, parameter "tSTAB") */ /* - ADC disable time: maximum delay should be a few ADC clock cycles */ /* - ADC stop conversion time: maximum delay should be a few ADC clock */ /* cycles */ /* - ADC conversion time: with this hypothesis of clock settings, maximum */ /* delay will be 99us. */ /* (refer to device reference manual, section "Timing") */ /* Unit: ms */ #define ADC_CALIBRATION_TIMEOUT_MS ((uint32_t) 1) #define ADC_ENABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_DISABLE_TIMEOUT_MS ((uint32_t) 1) #define ADC_STOP_CONVERSION_TIMEOUT_MS ((uint32_t) 1) #define ADC_CONVERSION_TIMEOUT_MS ((uint32_t) 2) /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* Definition of ADCx conversions data table size */ #define ADC_CONVERTED_DATA_BUFFER_SIZE ((uint32_t) 64) /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Parameters of timer (used as ADC conversion trigger) */ /* Timer frequency (unit: Hz). With a timer 16 bits and time base */ /* freq min 1Hz, range is min=1Hz, max=32kHz. */ #define TIMER_FREQUENCY ((uint32_t) 1000) /* Timer minimum frequency (unit: Hz), used to calculate frequency range. */ /* With a timer 16 bits, maximum frequency will be 32000 times this value. */ #define TIMER_FREQUENCY_RANGE_MIN ((uint32_t) 1) /* Timer prescaler maximum value (0xFFFF for a timer 16 bits) */ #define TIMER_PRESCALER_MAX_VALUE ((uint32_t)0xFFFF-1) 11 defines Private define/* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Variables for ADC conversion data */ __IO uint16_t aADCxConvertedData[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t aADCxConvertedData_Voltage_mVolt[ADC_CONVERTED_DATA_BUFFER_SIZE]; /* Value of voltage calculated from ADC conversion data (unit: mV) (array of data) */ /* Variable to report status of DMA transfer of ADC group regular conversions */ /* 0: DMA transfer is not completed */ /* 1: DMA transfer is completed */ /* 2: DMA transfer has not yet been started yet (initial state) */ __IO uint8_t ubDmaTransferStatus = 2; /* Variable set into DMA interruption callback */ Private variables /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Configure_DMA(void); void Configure_TIM_TimeBase_ADC_trigger(void); void Configure_ADC(void); void Activate_ADC(void); void LED_Init(void); void LED_On(void); void LED_Off(void); void LED_Blinking(uint32_t Period); void UserButton_Init(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { uint32_t tmp_index_adc_converted_data = 0; /* Configure the system clock to 100 MHz */ SystemClock_Config(); /* Init variable containing ADC conversion data */ for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++) { aADCxConvertedData[tmp_index_adc_converted_data] = VAR_CONVERTED_DATA_INIT_VALUE; }for (tmp_index_adc_converted_data = 0; tmp_index_adc_converted_data < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index_adc_converted_data++) { ... } /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure DMA for data transfer from ADC */ Configure_DMA(); /* Configure timer as a time base used to trig ADC conversion start */ Configure_TIM_TimeBase_ADC_trigger(); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it, use function "Activate_ADC()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); /* Activate ADC */ /* Perform ADC activation procedure to make it ready to convert. */ Activate_ADC(); /* Infinite loop */ while (1) { /* Note: ADC group regular conversion start is done into push button */ /* IRQ handler, refer to function "UserButton_Callback()". */ /* Then, ADC conversions are performed indefinitely (trigger from */ /* timer: ADC conversions as long as timer is running). */ /* Note: LED state depending on DMA transfer status is set into DMA */ /* IRQ handler, */ /* refer to functions "AdcDmaTransferComplete_Callback()" */ /* and "AdcDmaTransferHalf_Callback()". */ /* Note: ADC conversions data are stored into array */ /* "aADCxConvertedData" */ /* (for debug: see variable content into watch window). */ /* Note: ADC conversion data are computed to physical values */ /* into array "aADCxConvertedData_Voltage_mVolt" */ /* using ADC LL driver helper macro "__LL_ADC_CALC_DATA_TO_VOLTAGE()". */ /* (for debug: see variable content into watch window). */ }while (1) { ... } }{ ... } /** * @brief This function configures DMA for transfer of data from ADC * @param None * @retval None *//* ... */ void Configure_DMA(void) { /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable DMA interruptions */ NVIC_SetPriority(DMA2_Stream0_IRQn, 1); /* DMA IRQ lower priority than ADC IRQ */ NVIC_EnableIRQ(DMA2_Stream0_IRQn); /*## Configuration of DMA ##################################################*/ /* Enable the peripheral clock of DMA */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA2); /* Configure the DMA transfer */ /* - DMA transfer in circular mode to match with ADC configuration: */ /* DMA unlimited requests. */ /* - DMA transfer from ADC without address increment. */ /* - DMA transfer to memory with address increment. */ /* - DMA transfer from ADC by half-word to match with ADC configuration: */ /* ADC resolution 12 bits. */ /* - DMA transfer to memory by half-word to match with ADC conversion data */ /* buffer variable type: half-word. */ LL_DMA_ConfigTransfer(DMA2, LL_DMA_CHANNEL_0, LL_DMA_DIRECTION_PERIPH_TO_MEMORY | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT | LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_HALFWORD | LL_DMA_MDATAALIGN_HALFWORD | LL_DMA_PRIORITY_HIGH ); /* Set DMA transfer addresses of source and destination */ LL_DMA_ConfigAddresses(DMA2, LL_DMA_CHANNEL_0, LL_ADC_DMA_GetRegAddr(ADC1, LL_ADC_DMA_REG_REGULAR_DATA), (uint32_t)&aADCxConvertedData, LL_DMA_DIRECTION_PERIPH_TO_MEMORY); /* Set DMA transfer size */ LL_DMA_SetDataLength(DMA2, LL_DMA_CHANNEL_0, ADC_CONVERTED_DATA_BUFFER_SIZE); /* Enable DMA transfer interruption: transfer complete */ LL_DMA_EnableIT_TC(DMA2, LL_DMA_CHANNEL_0); /* Enable DMA transfer interruption: half transfer */ LL_DMA_EnableIT_HT(DMA2, LL_DMA_CHANNEL_0); /* Enable DMA transfer interruption: transfer error */ LL_DMA_EnableIT_TE(DMA2, LL_DMA_CHANNEL_0); /*## Activation of DMA #####################################################*/ /* Enable the DMA transfer */ LL_DMA_EnableStream(DMA2,LL_DMA_STREAM_0); }{ ... } /** * @brief Configure timer as a time base (timer instance: TIM2) * used to trig ADC conversion start. * @note In this ADC example, timer instance must be on APB1 (clocked by PCLK1) * to be compliant with frequency calculation used in this function. * @param None * @retval None *//* ... */ void Configure_TIM_TimeBase_ADC_trigger(void) { uint32_t timer_clock_frequency = 0; /* Timer clock frequency */ uint32_t timer_prescaler = 0; /* Time base prescaler to have timebase aligned on minimum frequency possible */ uint32_t timer_reload = 0; /* Timer reload value in function of timer prescaler to achieve time base period */ /*## Configuration of NVIC #################################################*/ /* Note: In this example, timer interrupts are not activated. */ /* If needed, timer interruption at each time base period is */ /* possible. */ /* Refer to timer examples. */ /* Configuration of timer as time base: */ /* Caution: Computation of frequency is done for a timer instance on APB1 */ /* (clocked by PCLK1) */ /* Timer frequency is configured from the following constants: */ /* - TIMER_FREQUENCY: timer frequency (unit: Hz). */ /* - TIMER_FREQUENCY_RANGE_MIN: timer minimum frequency possible */ /* (unit: Hz). */ /* Note: Refer to comments at these literals definition for more details. */ /* Retrieve timer clock source frequency */ /* If APB1 prescaler is different of 1, timers have a factor x2 on their */ /* clock source. */ if (LL_RCC_GetAPB1Prescaler() == LL_RCC_APB1_DIV_1) { timer_clock_frequency = __LL_RCC_CALC_PCLK1_FREQ(SystemCoreClock, LL_RCC_GetAPB1Prescaler()); }if (LL_RCC_GetAPB1Prescaler() == LL_RCC_APB1_DIV_1) { ... } else { timer_clock_frequency = (__LL_RCC_CALC_PCLK1_FREQ(SystemCoreClock, LL_RCC_GetAPB1Prescaler()) * 2); }else { ... } /* Timer prescaler calculation */ /* (computation for timer 16 bits, additional + 1 to round the prescaler up) */ timer_prescaler = ((timer_clock_frequency / (TIMER_PRESCALER_MAX_VALUE * TIMER_FREQUENCY_RANGE_MIN)) +1); /* Timer reload calculation */ timer_reload = (timer_clock_frequency / (timer_prescaler * TIMER_FREQUENCY)); /* Enable the timer peripheral clock */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2); /* Set timer pre-scaler value */ LL_TIM_SetPrescaler(TIM2, (timer_prescaler - 1)); /* Set timer auto-reload value */ LL_TIM_SetAutoReload(TIM2, (timer_reload - 1)); /* Counter mode: select up-counting mode */ LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP); /* Set the repetition counter */ LL_TIM_SetRepetitionCounter(TIM2, 0); /* Note: In this example, timer interrupts are not activated. */ /* If needed, timer interruption at each time base period is */ /* possible. */ /* Refer to timer examples. */ /* Set timer the trigger output (TRGO) */ LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_UPDATE); /* Enable counter */ LL_TIM_EnableCounter(TIM2); }{ ... } /** * @brief Configure ADC (ADC instance: ADC1) and GPIO used by ADC channels. * @note In case re-use of this function outside of this example: * This function includes checks of ADC hardware constraints before * executing some configuration functions. * - In this example, all these checks are not necessary but are * implemented anyway to show the best practice usages * corresponding to reference manual procedure. * (On some STM32 series, setting of ADC features are not * conditioned to ADC state. However, in order to be compliant with * other STM32 series and to show the best practice usages, * ADC state is checked anyway with same constraints). * Software can be optimized by removing some of these checks, * if they are not relevant considering previous settings and actions * in user application. * - If ADC is not in the appropriate state to modify some parameters, * the setting of these parameters is bypassed without error * reporting: * it can be the expected behavior in case of recall of this * function to update only a few parameters (which update fulfills * the ADC state). * Otherwise, it is up to the user to set the appropriate error * reporting in user application. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None *//* ... */ void Configure_ADC(void) { /*## Configuration of GPIO used by ADC channels ############################*/ /* Note: On this STM32 device, ADC1 channel 4 is mapped on GPIO pin PA.04 */ /* Enable GPIO Clock */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA); /* Configure GPIO in analog mode to be used as ADC input */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_4, LL_GPIO_MODE_ANALOG); /*## Configuration of NVIC #################################################*/ /* Configure NVIC to enable ADC1 interruptions */ NVIC_SetPriority(ADC_IRQn, 0); /* ADC IRQ greater priority than DMA IRQ */ NVIC_EnableIRQ(ADC_IRQn); /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: common to several ADC ########*/ /* Enable ADC clock (core clock) */ LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1); /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if(__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC clock (conversion clock) common to several ADC instances */ LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_CLOCK_SYNC_PCLK_DIV2); /* Set ADC measurement path to internal channels */ // LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_PATH_INTERNAL_NONE); /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Note: ADC multimode is not available on this device: */ /* only 1 ADC instance is present. */ /* Set ADC multimode configuration */ // LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_INDEPENDENT); /* Set ADC multimode DMA transfer */ // LL_ADC_SetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_REG_DMA_EACH_ADC); /* Set ADC multimode: delay between 2 sampling phases */ // LL_ADC_SetMultiTwoSamplingDelay(__LL_ADC_COMMON_INSTANCE(ADC1), LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE); }if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE() == 0) { ... } /*## Configuration of ADC hierarchical scope: ADC instance #################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC data resolution */ // LL_ADC_SetResolution(ADC1, LL_ADC_RESOLUTION_12B); /* Set ADC conversion data alignment */ // LL_ADC_SetResolution(ADC1, LL_ADC_DATA_ALIGN_RIGHT); /* Set Set ADC sequencers scan mode, for all ADC groups */ /* (group regular, group injected). */ // LL_ADC_SetSequencersScanMode(ADC1, LL_ADC_SEQ_SCAN_DISABLE); }if (LL_ADC_IsEnabled(ADC1) == 0) { ... } /*## Configuration of ADC hierarchical scope: ADC group regular ############*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC group regular trigger source */ LL_ADC_REG_SetTriggerSource(ADC1, LL_ADC_REG_TRIG_EXT_TIM2_TRGO); /* Set ADC group regular trigger polarity */ // LL_ADC_REG_SetTriggerEdge(ADC1, LL_ADC_REG_TRIG_EXT_RISING); /* Set ADC group regular continuous mode */ LL_ADC_REG_SetContinuousMode(ADC1, LL_ADC_REG_CONV_SINGLE); /* Set ADC group regular conversion data transfer */ LL_ADC_REG_SetDMATransfer(ADC1, LL_ADC_REG_DMA_TRANSFER_UNLIMITED); /* Specify which ADC flag between EOC (end of unitary conversion) */ /* or EOS (end of sequence conversions) is used to indicate */ /* the end of conversion. */ // LL_ADC_REG_SetFlagEndOfConversion(ADC1, LL_ADC_REG_FLAG_EOC_SEQUENCE_CONV); /* Set ADC group regular sequencer */ /* Note: On this STM32 series, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_REG_SetSequencerLength()". */ /* Set ADC group regular sequencer length and scan direction */ LL_ADC_REG_SetSequencerLength(ADC1, LL_ADC_REG_SEQ_SCAN_DISABLE); /* Set ADC group regular sequencer discontinuous mode */ // LL_ADC_REG_SetSequencerDiscont(ADC1, LL_ADC_REG_SEQ_DISCONT_DISABLE); /* Set ADC group regular sequence: channel on the selected sequence rank. */ LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_4); }if (LL_ADC_IsEnabled(ADC1) == 0) { ... } /*## Configuration of ADC hierarchical scope: ADC group injected ###########*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, ADC state is checked anyway with standard requirements */ /* (refer to description of this function). */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /* Set ADC group injected trigger source */ // LL_ADC_INJ_SetTriggerSource(ADC1, LL_ADC_INJ_TRIG_SOFTWARE); /* Set ADC group injected trigger polarity */ // LL_ADC_INJ_SetTriggerEdge(ADC1, LL_ADC_INJ_TRIG_EXT_RISING); /* Set ADC group injected conversion trigger */ // LL_ADC_INJ_SetTrigAuto(ADC1, LL_ADC_INJ_TRIG_INDEPENDENT); /* Set ADC group injected sequencer */ /* Note: On this STM32 series, ADC group injected sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Refer to description of function */ /* "LL_ADC_INJ_SetSequencerLength()". */ /* Set ADC group injected sequencer length and scan direction */ // LL_ADC_INJ_SetSequencerLength(ADC1, LL_ADC_INJ_SEQ_SCAN_DISABLE); /* Set ADC group injected sequencer discontinuous mode */ // LL_ADC_INJ_SetSequencerDiscont(ADC1, LL_ADC_INJ_SEQ_DISCONT_DISABLE); /* Set ADC group injected sequence: channel on the selected sequence rank. */ // LL_ADC_INJ_SetSequencerRanks(ADC1, LL_ADC_INJ_RANK_1, LL_ADC_CHANNEL_4); }if (LL_ADC_IsEnabled(ADC1) == 0) { ... } /*## Configuration of ADC hierarchical scope: channels #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Set ADC channels sampling time */ /* Note: Considering interruption occurring after each number of */ /* "ADC_CONVERTED_DATA_BUFFER_SIZE" ADC conversions */ /* (IT from DMA transfer complete), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_56CYCLES); }if (LL_ADC_IsEnabled(ADC1) == 0) { ... } /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: On this STM32 series, there is only 1 analog watchdog available. */ /* Set ADC analog watchdog: channels to be monitored */ // LL_ADC_SetAnalogWDMonitChannels(ADC1, LL_ADC_AWD_DISABLE); /* Set ADC analog watchdog: thresholds */ // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_HIGH, __LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)); // LL_ADC_SetAnalogWDThresholds(ADC1, LL_ADC_AWD_THRESHOLD_LOW, 0x000); /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 series */ /*## Configuration of ADC interruptions ####################################*/ /* Enable interruption ADC group regular overrun */ LL_ADC_EnableIT_OVR(ADC1); /* Note: in this example, ADC group regular end of conversions */ /* (number of ADC conversions defined by DMA buffer size) */ /* are notified by DMA transfer interruptions). */ }{ ... } /** * @brief Perform ADC activation procedure to make it ready to convert * (ADC instance: ADC1). * @note Operations: * - ADC instance * - Enable ADC * - ADC group regular * none: ADC conversion start-stop to be performed * after this function * - ADC group injected * none: ADC conversion start-stop to be performed * after this function * @param None * @retval None *//* ... */ void Activate_ADC(void) { #if (USE_TIMEOUT == 1) uint32_t Timeout = 0; /* Variable used for timeout management */ #endif /* USE_TIMEOUT */ /*## Operation on ADC hierarchical scope: ADC instance #####################*/ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 0) { /* Enable ADC */ LL_ADC_Enable(ADC1); }if (LL_ADC_IsEnabled(ADC1) == 0) { ... } /*## Operation on ADC hierarchical scope: ADC group regular ################*/ /* Note: No operation on ADC group regular performed here. */ /* ADC group regular conversions to be performed after this function */ /* using function: */ /* "LL_ADC_REG_StartConversion();" */ /*## Operation on ADC hierarchical scope: ADC group injected ###############*/ /* Note: No operation on ADC group injected performed here. */ /* ADC group injected conversions to be performed after this function */ /* using function: */ /* "LL_ADC_INJ_StartConversion();" */ }{ ... } /** * @brief Initialize LED2. * @param None * @retval None *//* ... */ void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_NO */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_NO); }{ ... } /** * @brief Turn-on LED2. * @param None * @retval None *//* ... */ void LED_On(void) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); }{ ... } /** * @brief Turn-off LED2. * @param None * @retval None *//* ... */ void LED_Off(void) { /* Turn LED2 off */ LL_GPIO_ResetOutputPin(LED2_GPIO_PORT, LED2_PIN); }{ ... } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None *//* ... */ void LED_Blinking(uint32_t Period) { /* Turn LED2 on */ LL_GPIO_SetOutputPin(LED2_GPIO_PORT, LED2_PIN); /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); }while (1) { ... } }{ ... } /** * @brief Configures User push-button in EXTI Line Mode. * @param None * @retval None *//* ... */ void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_NO); /* if(Button_Mode == BUTTON_MODE_EXTI) */ { /* Connect External Line to the GPIO */ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); ...} }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 100000000 * HCLK(Hz) = 100000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 400 * PLL_P = 4 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None *//* ... */ void SystemClock_Config(void) { /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }while (LL_RCC_HSE_IsReady() != 1) { ... }; /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_3); /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_8, 400, LL_RCC_PLLP_DIV_4); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }while (LL_RCC_PLL_IsReady() != 1) { ... }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { ... }; /* Set APB1 & APB2 prescaler */ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms */ SysTick_Config(100000000 / 1000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ SystemCoreClock = 100000000; }{ ... } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief Function to manage IRQ Handler * @param None * @retval None *//* ... */ void UserButton_Callback(void) { /* Start ADC conversion only on the first press on push button */ if (ubDmaTransferStatus == 2) { /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADC1) == 1) { LL_ADC_REG_StartConversionExtTrig(ADC1, LL_ADC_REG_TRIG_EXT_RISING); }if (LL_ADC_IsEnabled(ADC1) == 1) { ... } else { /* Error: ADC conversion start could not be performed */ LED_Blinking(LED_BLINK_ERROR); }else { ... } }if (ubDmaTransferStatus == 2) { ... } }{ ... } /** * @brief DMA transfer complete callback * @note This function is executed when the transfer complete interrupt * is generated * @retval None *//* ... */ void AdcDmaTransferComplete_Callback() { uint32_t tmp_index = 0; /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ /* Management of the 2nd half of the buffer */ for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE/2); tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) { aADCxConvertedData_Voltage_mVolt[tmp_index] = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index], LL_ADC_RESOLUTION_12B); }for (tmp_index = (ADC_CONVERTED_DATA_BUFFER_SIZE/2); tmp_index < ADC_CONVERTED_DATA_BUFFER_SIZE; tmp_index++) { ... } /* Update status variable of DMA transfer */ ubDmaTransferStatus = 1; /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ LED_On(); }{ ... } /** * @brief DMA half transfer callback * @note This function is executed when the half transfer interrupt * is generated * @retval None *//* ... */ void AdcDmaTransferHalf_Callback() { uint32_t tmp_index = 0; /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ /* Management of the 1st half of the buffer */ for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE/2); tmp_index++) { aADCxConvertedData_Voltage_mVolt[tmp_index] = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, aADCxConvertedData[tmp_index], LL_ADC_RESOLUTION_12B); }for (tmp_index = 0; tmp_index < (ADC_CONVERTED_DATA_BUFFER_SIZE/2); tmp_index++) { ... } /* Update status variable of DMA transfer */ ubDmaTransferStatus = 0; /* Set LED depending on DMA transfer status */ /* - Turn-on if DMA transfer is completed */ /* - Turn-off if DMA transfer is not completed */ LED_Off(); }{ ... } /** * @brief DMA transfer error callback * @note This function is executed when the transfer error interrupt * is generated during DMA transfer * @retval None *//* ... */ void AdcDmaTransferError_Callback() { /* Error detected during DMA transfer */ LED_Blinking(LED_BLINK_ERROR); }{ ... } /** * @brief ADC group regular overrun interruption callback * @note This function is executed when ADC group regular * overrun error occurs. * @retval None *//* ... */ void AdcGrpRegularOverrunError_Callback(void) { /* Note: Disable ADC interruption that caused this error before entering in */ /* infinite loop below. */ /* Disable ADC group regular overrun interruption */ LL_ADC_DisableIT_OVR(ADC1); /* Error from ADC */ LED_Blinking(LED_BLINK_ERROR); }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */