Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private variables
IwdgHandle
TimInputCaptureHandle
RCC_ClockFreq
uwLsiFreq
uwCaptureNumber
uwPeriodValue
uwMeasurementDone
Private function prototypes
main()
GetLSIFrequency()
SystemClock_Config()
Error_Handler()
Files
loading...
CodeScopeSTM32 Libraries and SamplesIWDG_ExampleSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file IWDG/IWDG_Example/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use the STM32F4xx IWDG HAL API * to update at regular period the IWDG counter and how to simulate a * software fault generating an MCU IWDG reset on expiry of a * programmed time period. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup IWDG_Example * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* IWDG and TIM handlers declaration */ IWDG_HandleTypeDef IwdgHandle; TIM_HandleTypeDef TimInputCaptureHandle; RCC_ClkInitTypeDef RCC_ClockFreq; static __IO uint32_t uwLsiFreq = 0; __IO uint32_t uwCaptureNumber = 0; __IO uint32_t uwPeriodValue = 0; __IO uint32_t uwMeasurementDone = 0; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); static uint32_t GetLSIFrequency(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization *//* ... */ HAL_Init(); /* Configure the system clock to 168 MHz */ SystemClock_Config(); /* Configure LED1, LED2 and LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED2); BSP_LED_Init(LED3); /* Configure the User Button in EXTI Mode */ BSP_PB_Init(BUTTON_TAMPER, BUTTON_MODE_EXTI); /*##-1- Check if the system has resumed from IWDG reset ####################*/ if(__HAL_RCC_GET_FLAG(RCC_FLAG_IWDGRST) != RESET) { /* IWDGRST flag set: Turn LED1 on */ BSP_LED_On(LED1); /* Clear reset flags */ __HAL_RCC_CLEAR_RESET_FLAGS(); }if (__HAL_RCC_GET_FLAG(RCC_FLAG_IWDGRST) != RESET) { ... } else { /* IWDGRST flag is not set: Turn LED1 off */ BSP_LED_Off(LED1); }else { ... } /*##-2- Get the LSI frequency: TIM5 is used to measure the LSI frequency ###*/ uwLsiFreq = GetLSIFrequency(); /*##-3- Configure the IWDG peripheral ######################################*/ /* Set counter reload value to obtain 250ms IWDG Timeout. IWDG counter clock Frequency = LsiFreq / 32 Counter Reload Value = 250ms / IWDG counter clock period = 0.25s / (32/LsiFreq) = LsiFreq / (32 * 4) = LsiFreq / 128 *//* ... */ IwdgHandle.Instance = IWDG; IwdgHandle.Init.Prescaler = IWDG_PRESCALER_32; IwdgHandle.Init.Reload = uwLsiFreq/128; if(HAL_IWDG_Init(&IwdgHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_IWDG_Init(&IwdgHandle) != HAL_OK) { ... } /* Infinite loop */ while (1) { /* Toggle LED2 */ BSP_LED_Toggle(LED2); /* Insert 240 ms delay */ HAL_Delay(240); /* Refresh IWDG: reload counter */ if(HAL_IWDG_Refresh(&IwdgHandle) != HAL_OK) { /* Refresh Error */ Error_Handler(); }if (HAL_IWDG_Refresh(&IwdgHandle) != HAL_OK) { ... } }while (1) { ... } }{ ... } /** * @brief Configures TIM5 to measure the LSI oscillator frequency. * @param None * @retval LSI Frequency *//* ... */ static uint32_t GetLSIFrequency(void) { uint32_t pclk1 = 0; TIM_IC_InitTypeDef timinputconfig; /* Enable the LSI oscillator */ __HAL_RCC_LSI_ENABLE(); /* Wait till LSI is ready */ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) { }while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) { ... } /* Configure the TIM peripheral */ /* Set TIMx instance */ TimInputCaptureHandle.Instance = TIM5; /* TIM5 configuration: Input Capture mode --------------------- The LSI oscillator is connected to TIM5 CH4. The Rising edge is used as active edge. The TIM5 CCR4 is used to compute the frequency value. ------------------------------------------------------------ *//* ... */ TimInputCaptureHandle.Init.Prescaler = 0; TimInputCaptureHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimInputCaptureHandle.Init.Period = 0xFFFF; TimInputCaptureHandle.Init.ClockDivision = 0; TimInputCaptureHandle.Init.RepetitionCounter = 0; if(HAL_TIM_IC_Init(&TimInputCaptureHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_TIM_IC_Init(&TimInputCaptureHandle) != HAL_OK) { ... } /* Connect internally the TIM5_CH4 Input Capture to the LSI clock output */ HAL_TIMEx_RemapConfig(&TimInputCaptureHandle, TIM_TIM5_LSI); /* Configure the Input Capture of channel 4 */ timinputconfig.ICPolarity = TIM_ICPOLARITY_RISING; timinputconfig.ICSelection = TIM_ICSELECTION_DIRECTTI; timinputconfig.ICPrescaler = TIM_ICPSC_DIV8; timinputconfig.ICFilter = 0; if(HAL_TIM_IC_ConfigChannel(&TimInputCaptureHandle, &timinputconfig, TIM_CHANNEL_4) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_TIM_IC_ConfigChannel(&TimInputCaptureHandle, &timinputconfig, TIM_CHANNEL_4) != HAL_OK) { ... } /* Reset the flags */ TimInputCaptureHandle.Instance->SR = 0; /* Start the TIM Input Capture measurement in interrupt mode */ if(HAL_TIM_IC_Start_IT(&TimInputCaptureHandle, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); }if (HAL_TIM_IC_Start_IT(&TimInputCaptureHandle, TIM_CHANNEL_4) != HAL_OK) { ... } /* Wait until the TIM5 get 2 LSI edges (refer to TIM5_IRQHandler() in stm32f4xx_it.c file) *//* ... */ while(uwMeasurementDone == 0) { }while (uwMeasurementDone == 0) { ... } uwCaptureNumber = 0; /* Deinitialize the TIM5 peripheral registers to their default reset values */ HAL_TIM_IC_DeInit(&TimInputCaptureHandle); /* Compute the LSI frequency, depending on TIM5 input clock frequency (PCLK1)*/ /* Get PCLK1 frequency */ pclk1 = HAL_RCC_GetPCLK1Freq(); /* Get PCLK1 prescaler */ if((RCC->CFGR & RCC_CFGR_PPRE1) == 0) { /* PCLK1 prescaler equal to 1 => TIMCLK = PCLK1 */ return ((pclk1 * 8) / uwPeriodValue); }if ((RCC->CFGR & RCC_CFGR_PPRE1) == 0) { ... } else { /* PCLK1 prescaler different from 1 => TIMCLK = 2 * PCLK1 */ return (((2 * pclk1) * 8) / uwPeriodValue); }else { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 168000000 * HCLK(Hz) = 168000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 25000000 * PLL_M = 25 * PLL_N = 336 * PLL_P = 2 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; HAL_RCC_OscConfig(&RCC_OscInitStruct); /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers *//* ... */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); /* STM32F405x/407x/415x/417x Revision Z and upper devices: prefetch is supported */ if (HAL_GetREVID() >= 0x1001) { /* Enable the Flash prefetch */ __HAL_FLASH_PREFETCH_BUFFER_ENABLE(); }if (HAL_GetREVID() >= 0x1001) { ... } }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while(1) { }while (1) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t* file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */