Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private variables
TimHandle
uwPrescalerValue
Private function prototypes
main()
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *)
SystemClock_Config()
Error_Handler()
Files
loading...
CodeScopeSTM32 Libraries and SamplesTIM_TimeBaseSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file TIM/TIM_TimeBase/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F4xx TIM HAL API to generate * a time base of one second with the corresponding Interrupt request. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup TIM_TimeBase * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* TIM handle declaration */ TIM_HandleTypeDef TimHandle; /* Prescaler declaration */ uint32_t uwPrescalerValue = 0; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization: global MSP (MCU Support Package) initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED1 & LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED3); /*##-1- Configure the TIM peripheral #######################################*/ /* ----------------------------------------------------------------------- In this example TIM3 input clock (TIM3CLK) is set to APB1 clock (PCLK1) x2, since APB1 prescaler is equal to 4. TIM3CLK = PCLK1*2 PCLK1 = HCLK/4 => TIM3CLK = HCLK/2 = SystemCoreClock/2 To get TIM3 counter clock at 10 KHz, the Prescaler is computed as follows: Prescaler = (TIM3CLK / TIM3 counter clock) - 1 Prescaler = ((SystemCoreClock/2) /10 KHz) - 1 Note: SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file. Each time the core clock (HCLK) changes, user had to update SystemCoreClock variable value. Otherwise, any configuration based on this variable will be incorrect. This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetSysClockFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency ----------------------------------------------------------------------- *//* ... */ /* Compute the prescaler value to have TIMx counter clock equal to 10000 Hz */ uwPrescalerValue = (uint32_t)((SystemCoreClock / 2) / 10000) - 1; /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIMx peripheral as follows: + Period = 10000 - 1 + Prescaler = ((SystemCoreClock / 2)/10000) - 1 + ClockDivision = 0 + Counter direction = Up *//* ... */ TimHandle.Init.Period = 10000 - 1; TimHandle.Init.Prescaler = uwPrescalerValue; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.RepetitionCounter = 0; TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_TIM_Base_Init(&TimHandle) != HAL_OK) { ... } /*##-2- Start the TIM Base generation in interrupt mode ####################*/ /* Start Channel1 */ if (HAL_TIM_Base_Start_IT(&TimHandle) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIM_Base_Start_IT(&TimHandle) != HAL_OK) { ... } while (1) { }while (1) { ... } }{ ... } /** * @brief Period elapsed callback in non blocking mode * @param htim : TIM handle * @retval None *//* ... */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { BSP_LED_Toggle(LED1); }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 25000000 * PLL_M = 25 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 6 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 6; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Activate the OverDrive to reach the 180 MHz Frequency */ ret = HAL_PWREx_EnableOverDrive(); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while (1) { }while (1) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */ #endif /** * @} *//* ... */ /** * @} *//* ... */