Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private typedef
#define PERIOD_VALUE
#define PULSE1_VALUE
#define PULSE2_VALUE
#define PULSE3_VALUE
Private variables
TimHandle
sPWMConfig
sBreakConfig
uwPrescalerValue
Private function prototypes
main()
SystemClock_Config()
Error_Handler()
Files
loading...
CodeScopeSTM32 Libraries and SamplesTIM_ComplementarySignalsSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file TIM/TIM_ComplementarySignals/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F4xx TIM HAL API to generate * 3 signals in PWM with its complementaries. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup TIM_ComplementarySignals * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ #define PERIOD_VALUE (1800 - 1) /* Period Value */ #define PULSE1_VALUE (1800/2) /* Capture Compare 1 Value */ #define PULSE2_VALUE (1800/4) /* Capture Compare 2 Value */ #define PULSE3_VALUE (1800/8) /* Capture Compare 3 Value */ Private typedef /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Timer handler declaration */ TIM_HandleTypeDef TimHandle; /* Timer Output Compare Configuration Structure declaration */ TIM_OC_InitTypeDef sPWMConfig; /* Timer Break Configuration Structure declaration */ TIM_BreakDeadTimeConfigTypeDef sBreakConfig; /* Counter Prescaler value */ uint32_t uwPrescalerValue = 0; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization: global MSP (MCU Support Package) initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED3 */ BSP_LED_Init(LED3); /* Compute the prescaler value to have TIM1 counter clock equal to 18MHz */ uwPrescalerValue = (uint32_t) ((SystemCoreClock / 18000000) - 1); /*##-1- Configure the TIM peripheral #######################################*/ /* --------------------------------------------------------------------------- 1/ Generate 3 complementary PWM signals with 3 different duty cycles: TIM1 input clock (TIM1CLK) is set to 2 * APB2 clock (PCLK2), since APB2 prescaler is different from 1. TIM1CLK = 2 * PCLK2 PCLK1 = HCLK / 2 => TIM1CLK = HCLK = SystemCoreClock TIM1CLK is fixed to SystemCoreClock, the TIM1 Prescaler is set to have TIM1 counter clock = 18MHz. The objective is to generate PWM signal at 10 KHz: - TIM1_Period = (TIM1 counter clock / 10000) - 1 The Three Duty cycles are computed as the following description: The channel 1 duty cycle is set to 50% so channel 1N is set to 50%. The channel 2 duty cycle is set to 25% so channel 2N is set to 75%. The channel 3 duty cycle is set to 12.5% so channel 3N is set to 87.5%. The Timer pulse is calculated as follows: - ChannelxPulse = DutyCycle * (TIM1_Period - 1) / 100 2/ Insert a dead time equal to (100/SystemCoreClock) us 3/ Configure the break feature, active at High level, and using the automatic output enable feature 4/ Use the Locking parameters level1. Note: SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file. Each time the core clock (HCLK) changes, user had to update SystemCoreClock variable value. Otherwise, any configuration based on this variable will be incorrect. This variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetSysClockFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency --------------------------------------------------------------------------- *//* ... */ /* Initialize TIM peripheral as follows: + Prescaler = (SystemCoreClock/18000000) - 1 + Period = (1800 - 1) (to have an output frequency equal to 10 KHz) + ClockDivision = 0 + Counter direction = Up *//* ... */ /* Select the Timer instance */ TimHandle.Instance = TIM1; TimHandle.Init.Prescaler = uwPrescalerValue; TimHandle.Init.Period = PERIOD_VALUE; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.RepetitionCounter = 0; TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if(HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) { ... } /*##-2- Configure the PWM channels #########################################*/ /* Common configuration for all channels */ sPWMConfig.OCMode = TIM_OCMODE_PWM1; sPWMConfig.OCPolarity = TIM_OCPOLARITY_HIGH; sPWMConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH; sPWMConfig.OCIdleState = TIM_OCIDLESTATE_SET; sPWMConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET; sPWMConfig.OCFastMode = TIM_OCFAST_DISABLE; /* Set the pulse value for channel 1 */ sPWMConfig.Pulse = PULSE1_VALUE; if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &sPWMConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sPWMConfig, TIM_CHANNEL_1) != HAL_OK) { ... } /* Set the pulse value for channel 2 */ sPWMConfig.Pulse = PULSE2_VALUE; if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &sPWMConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sPWMConfig, TIM_CHANNEL_2) != HAL_OK) { ... } /* Set the pulse value for channel 3 */ sPWMConfig.Pulse = PULSE3_VALUE; if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &sPWMConfig, TIM_CHANNEL_3) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sPWMConfig, TIM_CHANNEL_3) != HAL_OK) { ... } /* Set the Break feature & Dead time */ sBreakConfig.BreakState = TIM_BREAK_ENABLE; sBreakConfig.DeadTime = 100; sBreakConfig.OffStateRunMode = TIM_OSSR_ENABLE; sBreakConfig.OffStateIDLEMode = TIM_OSSI_ENABLE; sBreakConfig.LockLevel = TIM_LOCKLEVEL_1; sBreakConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_ENABLE; if(HAL_TIMEx_ConfigBreakDeadTime(&TimHandle, &sBreakConfig) != HAL_OK) { /* Configuration Error */ Error_Handler(); }if (HAL_TIMEx_ConfigBreakDeadTime(&TimHandle, &sBreakConfig) != HAL_OK) { ... } /*##-3- Start PWM signals generation #######################################*/ /* Start channel 1 */ if(HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { ... } /* Start channel 1N */ if(HAL_TIMEx_PWMN_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIMEx_PWMN_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { ... } /* Start channel 2 */ if(HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { ... } /* Start channel 2N */ if(HAL_TIMEx_PWMN_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIMEx_PWMN_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { ... } /* Start channel 3 */ if(HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { ... } /* Start channel 3N */ if(HAL_TIMEx_PWMN_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { /* Starting Error */ Error_Handler(); }if (HAL_TIMEx_PWMN_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { ... } while (1) { }while (1) { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 25000000 * PLL_M = 25 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 6 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 6; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Activate the OverDrive to reach the 180 MHz Frequency */ ret = HAL_PWREx_EnableOverDrive(); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while (1) { }while (1) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */ #endif /** * @} *//* ... */ /** * @} *//* ... */