Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private define
#define EEPROM_ADDRESS
#define EEPROM_PAGESIZE
#define I2Cx_TIMEOUT_MAX
#define EEPROM_MAX_TRIALS
Private variables
I2cHandle
aTxBuffer
aRxBuffer
Memory_Address
Remaining_Bytes
Private function prototypes
main()
SystemClock_Config()
HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *)
HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *)
HAL_I2C_ErrorCallback(I2C_HandleTypeDef *)
Error_Handler()
Buffercmp(uint8_t *, uint8_t *, uint16_t)
Files
loading...
CodeScopeSTM32 Libraries and SamplesI2C_EEPROMSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file I2C/I2C_EEPROM/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F4xx I2C HAL API to transmit * and receive a data buffer with a communication process based on * DMA transfer. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup I2C_EEPROM * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define EEPROM_ADDRESS 0xA6 #define EEPROM_PAGESIZE 4 /* RF EEPROM ANT7-M24LR used */ /* Maximum Timeout values for flags waiting loops. These timeouts are not based on accurate values, they just guarantee that the application will not remain stuck if the I2C communication is corrupted. You may modify these timeout values depending on CPU frequency and application conditions (interrupts routines ...). *//* ... */ #define I2Cx_TIMEOUT_MAX 300 /* Maximum number of trials for HAL_I2C_IsDeviceReady() function */ #define EEPROM_MAX_TRIALS 300 Private define /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* I2C handler declaration */ I2C_HandleTypeDef I2cHandle; /* Buffer used for transmission */ uint8_t aTxBuffer[] = " ****I2C EEPROM communication based on DMA**** ****I2C EEPROM communication based on DMA**** ****I2C EEPROM communication based on DMA**** "; /* Buffer used for reception */ uint8_t aRxBuffer[RXBUFFERSIZE]; /* Useful variables during communication */ uint16_t Memory_Address; int Remaining_Bytes; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength); static void Error_Handler(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization: global MSP (MCU Support Package) initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED1, LED2 and LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED2); BSP_LED_Init(LED3); /*##-1- Configure the I2C peripheral #######################################*/ I2cHandle.Instance = I2Cx; I2cHandle.Init.ClockSpeed = 400000; I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; I2cHandle.Init.OwnAddress1 = 0x00; I2cHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; I2cHandle.Init.OwnAddress2 = 0x00; I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; I2cHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&I2cHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_I2C_Init(&I2cHandle) != HAL_OK) { ... } /* The board sends the message to EEPROM then reads it back */ /*##-2- Start writing process ##############################################*/ /* Initialize Remaining Bytes Value to TX Buffer Size */ Remaining_Bytes = TXBUFFERSIZE; /* Initialize Memory address to 0 since EEPROM write will start from address 0 */ Memory_Address = 0; /* Since page size is 4 bytes, the write procedure will be done in a loop */ while (Remaining_Bytes > 0) { /* Write EEPROM_PAGESIZE */ if(HAL_I2C_Mem_Write_DMA(&I2cHandle , (uint16_t)EEPROM_ADDRESS, Memory_Address, I2C_MEMADD_SIZE_16BIT, (uint8_t*)(aTxBuffer + Memory_Address), EEPROM_PAGESIZE)!= HAL_OK) { /* Writing process Error */ Error_Handler(); }if (HAL_I2C_Mem_Write_DMA(&I2cHandle , (uint16_t)EEPROM_ADDRESS, Memory_Address, I2C_MEMADD_SIZE_16BIT, (uint8_t*)(aTxBuffer + Memory_Address), EEPROM_PAGESIZE)!= HAL_OK) { ... } /* Wait for the end of the transfer */ /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY) { ... } /* Check if the EEPROM is ready for a new operation */ while (HAL_I2C_IsDeviceReady(&I2cHandle, EEPROM_ADDRESS, EEPROM_MAX_TRIALS, I2Cx_TIMEOUT_MAX) == HAL_TIMEOUT); /* Wait for the end of the transfer */ while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY) { ... } /* Update Remaining bytes and Memory Address values */ Remaining_Bytes -= EEPROM_PAGESIZE; Memory_Address += EEPROM_PAGESIZE; }while (Remaining_Bytes > 0) { ... } /*##-3- Start reading process ##############################################*/ if (HAL_I2C_Mem_Read_DMA(&I2cHandle, (uint16_t)EEPROM_ADDRESS, 0, I2C_MEMADD_SIZE_16BIT, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { /* Reading process Error */ Error_Handler(); }if (HAL_I2C_Mem_Read_DMA(&I2cHandle, (uint16_t)EEPROM_ADDRESS, 0, I2C_MEMADD_SIZE_16BIT, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { ... } /* Wait for the end of the transfer */ while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY) { ... } /*##-4- Compare the sent and received buffers ##############################*/ if (Buffercmp((uint8_t *)aTxBuffer, (uint8_t *)aRxBuffer, RXBUFFERSIZE)) { /* Processing Error */ Error_Handler(); }if (Buffercmp((uint8_t *)aTxBuffer, (uint8_t *)aRxBuffer, RXBUFFERSIZE)) { ... } /* Infinite loop */ while (1) { }while (1) { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 25000000 * PLL_M = 25 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 6 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 6; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Activate the OverDrive to reach the 180 MHz Frequency */ ret = HAL_PWREx_EnableOverDrive(); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } }{ ... } /** * @brief Tx Transfer completed callback. * @param I2cHandle: I2C handle * @note This example shows a simple way to report end of DMA Tx transfer, and * you can add your own implementation. * @retval None *//* ... */ void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *I2cHandle) { /* Turn LED1 on: Transfer in transmission process is correct */ BSP_LED_On(LED1); }{ ... } /** * @brief Rx Transfer completed callback. * @param I2cHandle: I2C handle * @note This example shows a simple way to report end of DMA Rx transfer, and * you can add your own implementation. * @retval None *//* ... */ void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *I2cHandle) { /* Turn LED2 on: Transfer in reception process is correct */ BSP_LED_On(LED2); }{ ... } /** * @brief I2C error callbacks. * @param I2cHandle: I2C handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None *//* ... */ void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle) { /* Turn LED3 on: Transfer error in reception/transmission process */ BSP_LED_On(LED3); }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while (1) { }while (1) { ... } }{ ... } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 *//* ... */ static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; }if ((*pBuffer1) != *pBuffer2) { ... } pBuffer1++; pBuffer2++; }while (BufferLength--) { ... } return 0; }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */