Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private define
#define BUFFER_SIZE
#define WRITE_READ_ADDR
Private variables
hsdram
SDRAM_Timing
command
aTxBuffer
aRxBuffer
uwWriteReadStatus
uwIndex
Private function prototypes
main()
SystemClock_Config()
Error_Handler()
BSP_SDRAM_Initialization_Sequence(SDRAM_HandleTypeDef *, FMC_SDRAM_CommandTypeDef *)
Fill_Buffer(uint32_t *, uint32_t, uint32_t)
Files
loading...
CodeScopeSTM32 Libraries and SamplesFMC_SDRAMSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file FMC/FMC_SDRAM/Src/main.c * @author MCD Application Team * @brief This example describes how to configure and use GPIOs through * the STM32F4xx HAL API. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup FMC_SDRAM * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define BUFFER_SIZE ((uint32_t)0x0100) #define WRITE_READ_ADDR ((uint32_t)0x0800) Private define /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ SDRAM_HandleTypeDef hsdram; FMC_SDRAM_TimingTypeDef SDRAM_Timing; FMC_SDRAM_CommandTypeDef command; /* Read/Write Buffers */ uint32_t aTxBuffer[BUFFER_SIZE]; uint32_t aRxBuffer[BUFFER_SIZE]; /* Status variables */ __IO uint32_t uwWriteReadStatus = 0; /* Counter index */ uint32_t uwIndex = 0; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); static void BSP_SDRAM_Initialization_Sequence(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_CommandTypeDef *Command); static void Fill_Buffer(uint32_t *pBuffer, uint32_t uwBufferLenght, uint32_t uwOffset); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization: global MSP (MCU Support Package) initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED1, LED2 and LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED2); BSP_LED_Init(LED3); /*##-1- Configure the SDRAM device #########################################*/ /* SDRAM device configuration */ hsdram.Instance = FMC_SDRAM_DEVICE; SDRAM_Timing.LoadToActiveDelay = 2; SDRAM_Timing.ExitSelfRefreshDelay = 6; SDRAM_Timing.SelfRefreshTime = 4; SDRAM_Timing.RowCycleDelay = 6; SDRAM_Timing.WriteRecoveryTime = 2; SDRAM_Timing.RPDelay = 2; SDRAM_Timing.RCDDelay = 2; hsdram.Init.SDBank = FMC_SDRAM_BANK1; hsdram.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8; hsdram.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12; hsdram.Init.MemoryDataWidth = SDRAM_MEMORY_WIDTH; hsdram.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4; hsdram.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3; hsdram.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE; hsdram.Init.SDClockPeriod = SDCLOCK_PERIOD; hsdram.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE; hsdram.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0; /* Initialize the SDRAM controller */ if(HAL_SDRAM_Init(&hsdram, &SDRAM_Timing) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_SDRAM_Init(&hsdram, &SDRAM_Timing) != HAL_OK) { ... } /* Program the SDRAM external device */ BSP_SDRAM_Initialization_Sequence(&hsdram, &command); /*##-2- SDRAM memory read/write access #####################################*/ /* Fill the buffer to write */ Fill_Buffer(aTxBuffer, BUFFER_SIZE, 0xA244250F); /* Write data to the SDRAM memory */ for (uwIndex = 0; uwIndex < BUFFER_SIZE; uwIndex++) { *(__IO uint32_t*) (SDRAM_BANK_ADDR + WRITE_READ_ADDR + 4*uwIndex) = aTxBuffer[uwIndex]; }for (uwIndex = 0; uwIndex < BUFFER_SIZE; uwIndex++) { ... } /* Read back data from the SDRAM memory */ for (uwIndex = 0; uwIndex < BUFFER_SIZE; uwIndex++) { aRxBuffer[uwIndex] = *(__IO uint32_t*) (SDRAM_BANK_ADDR + WRITE_READ_ADDR + 4*uwIndex); }for (uwIndex = 0; uwIndex < BUFFER_SIZE; uwIndex++) { ... } /*##-3- Checking data integrity ############################################*/ for (uwIndex = 0; (uwIndex < BUFFER_SIZE) && (uwWriteReadStatus == 0); uwIndex++) { if (aRxBuffer[uwIndex] != aTxBuffer[uwIndex]) { uwWriteReadStatus++; }if (aRxBuffer[uwIndex] != aTxBuffer[uwIndex]) { ... } }for (uwIndex = 0; (uwIndex < BUFFER_SIZE) && (uwWriteReadStatus == 0); uwIndex++) { ... } if (uwWriteReadStatus != PASSED) { /* KO, turn on LED2 */ BSP_LED_On(LED2); }if (uwWriteReadStatus != PASSED) { ... } else { /* OK, turn on LED1 */ BSP_LED_On(LED1); }else { ... } /* Infinite loop */ while (1) { }while (1) { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 6 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; #if defined(USE_STM32469I_DISCO_REVA) RCC_OscInitStruct.PLL.PLLM = 25; #else RCC_OscInitStruct.PLL.PLLM = 8; #endif /* USE_STM32469I_DISCO_REVA */ RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 6; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Activate the OverDrive to reach the 180 MHz Frequency */ ret = HAL_PWREx_EnableOverDrive(); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* User may add here some code to deal with this error */ /* Turn LED3 on */ BSP_LED_On(LED3); while(1) { }while (1) { ... } }{ ... } /** * @brief Perform the SDRAM exernal memory inialization sequence * @param hsdram: SDRAM handle * @param Command: Pointer to SDRAM command structure * @retval None *//* ... */ static void BSP_SDRAM_Initialization_Sequence(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_CommandTypeDef *Command) { __IO uint32_t tmpmrd =0; /* Step 3: Configure a clock configuration enable command */ Command->CommandMode = FMC_SDRAM_CMD_CLK_ENABLE; Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command->AutoRefreshNumber = 1; Command->ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(hsdram, Command, SDRAM_TIMEOUT); /* Step 4: Insert 100 us minimum delay */ /* Inserted delay is equal to 1 ms due to systick time base unit (ms) */ HAL_Delay(1); /* Step 5: Configure a PALL (precharge all) command */ Command->CommandMode = FMC_SDRAM_CMD_PALL; Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command->AutoRefreshNumber = 1; Command->ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(hsdram, Command, SDRAM_TIMEOUT); /* Step 6 : Configure a Auto-Refresh command */ Command->CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE; Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command->AutoRefreshNumber = 8; Command->ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(hsdram, Command, SDRAM_TIMEOUT); /* Step 7: Program the external memory mode register */ tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 | SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL | SDRAM_MODEREG_CAS_LATENCY_3 | SDRAM_MODEREG_OPERATING_MODE_STANDARD | SDRAM_MODEREG_WRITEBURST_MODE_SINGLE; Command->CommandMode = FMC_SDRAM_CMD_LOAD_MODE; Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command->AutoRefreshNumber = 1; Command->ModeRegisterDefinition = tmpmrd; /* Send the command */ HAL_SDRAM_SendCommand(hsdram, Command, SDRAM_TIMEOUT); /* Step 8: Set the refresh rate counter */ /* (15.62 us x Freq) - 20 */ /* Set the device refresh counter */ hsdram->Instance->SDRTR |= ((uint32_t)((1386)<< 1)); }{ ... } /** * @brief Fills buffer with user predefined data. * @param pBuffer: pointer on the buffer to fill * @param uwBufferLenght: size of the buffer to fill * @param uwOffset: first value to fill on the buffer * @retval None *//* ... */ static void Fill_Buffer(uint32_t *pBuffer, uint32_t uwBufferLenght, uint32_t uwOffset) { uint32_t tmpIndex = 0; /* Put in global buffer different values */ for (tmpIndex = 0; tmpIndex < uwBufferLenght; tmpIndex++ ) { pBuffer[tmpIndex] = tmpIndex + uwOffset; }for (tmpIndex = 0; tmpIndex < uwBufferLenght; tmpIndex++) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */