Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private variables
UartHandle
aTxStartMessage
aTxEndMessage
aRxBuffer
Private function prototypes
main()
SystemClock_Config()
Error_Handler()
HAL_UART_TxCpltCallback(UART_HandleTypeDef *)
HAL_UART_RxCpltCallback(UART_HandleTypeDef *)
HAL_UART_ErrorCallback(UART_HandleTypeDef *)
Files
loading...
CodeScopeSTM32 Libraries and SamplesUART_HyperTerminal_DMASrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file UART/UART_HyperTerminal_DMA/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use UART HAL API to transmit * and receive a data buffer with a communication process based on * DMA transfer. * The communication is done with the Hyperterminal PC application. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup UART_Hyperterminal_DMA * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* UART handler declaration */ UART_HandleTypeDef UartHandle; /* Buffer used for transmission */ uint8_t aTxStartMessage[] = "\n\r ****UART-Hyperterminal communication based on DMA****\n\r Enter 10 characters using keyboard :\n\r"; uint8_t aTxEndMessage[] = "\n\r Example Finished\n\r"; /* Buffer used for reception */ uint8_t aRxBuffer[RXBUFFERSIZE]; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization: global MSP (MCU Support Package) initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED1 and LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED3); /*##-1- Configure the UART peripheral ######################################*/ /* Put the USART peripheral in the Asynchronous mode (UART Mode) */ /* UART configured as follows: - Word Length = 8 Bits (7 data bit + 1 parity bit) : BE CAREFUL : Program 7 data bits + 1 parity bit in PC HyperTerminal - Stop Bit = One Stop bit - Parity = ODD parity - BaudRate = 9600 baud - Hardware flow control disabled (RTS and CTS signals) *//* ... */ UartHandle.Instance = USARTx; UartHandle.Init.BaudRate = 9600; UartHandle.Init.WordLength = UART_WORDLENGTH_8B; UartHandle.Init.StopBits = UART_STOPBITS_1; UartHandle.Init.Parity = UART_PARITY_ODD; UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; UartHandle.Init.Mode = UART_MODE_TX_RX; UartHandle.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&UartHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_UART_Init(&UartHandle) != HAL_OK) { ... } /*##-2- Start the transmission process #####################################*/ /* User start transmission data through "TxBuffer" buffer */ if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxStartMessage, TXSTARTMESSAGESIZE)!= HAL_OK) { /* Transfer error in transmission process */ Error_Handler(); }if (HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxStartMessage, TXSTARTMESSAGESIZE)!= HAL_OK) { ... } /*##-3- Put UART peripheral in reception process ###########################*/ /* Any data received will be stored in "RxBuffer" buffer : the number max of data received is 10 *//* ... */ if (HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { /* Transfer error in reception process */ Error_Handler(); }if (HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { ... } /*##-4- Wait for the end of the transfer ###################################*/ /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_UART_GetState(&UartHandle) != HAL_UART_STATE_READY) { }while (HAL_UART_GetState(&UartHandle) != HAL_UART_STATE_READY) { ... } /*##-5- Send the received Buffer ###########################################*/ if (HAL_UART_Transmit_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { /* Transfer error in transmission process */ Error_Handler(); }if (HAL_UART_Transmit_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK) { ... } /*##-6- Wait for the end of the transfer ###################################*/ /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_UART_GetState(&UartHandle) != HAL_UART_STATE_READY) { }while (HAL_UART_GetState(&UartHandle) != HAL_UART_STATE_READY) { ... } /*##-7- Send the End Message ###############################################*/ if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxEndMessage, TXENDMESSAGESIZE)!= HAL_OK) { /* Turn LED3 on: Transfer error in transmission process */ BSP_LED_On(LED3); while(1) { }while (1) { ... } }if (HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxEndMessage, TXENDMESSAGESIZE)!= HAL_OK) { ... } /*##-8- Wait for the end of the transfer ###################################*/ while (HAL_UART_GetState(&UartHandle) != HAL_UART_STATE_READY) { }while (HAL_UART_GetState(&UartHandle) != HAL_UART_STATE_READY) { ... } /* Infinite loop */ while (1) { }while (1) { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 2; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Activate the OverDrive to reach the 180 MHz Frequency */ ret = HAL_PWREx_EnableOverDrive(); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Toggle LED3 for error */ while(1) { BSP_LED_Toggle(LED3); HAL_Delay(1000); }while (1) { ... } }{ ... } /** * @brief Tx Transfer completed callback * @param huart: UART handle. * @note This example shows a simple way to report end of DMA Tx transfer, and * you can add your own implementation. * @retval None *//* ... */ void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) { /* Toggle LED1 : Transfer in transmission process is correct */ BSP_LED_On(LED1); }{ ... } /** * @brief Rx Transfer completed callback * @param huart: UART handle * @note This example shows a simple way to report end of DMA Rx transfer, and * you can add your own implementation. * @retval None *//* ... */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { /* Turn LED3 on: Transfer in reception process is correct */ BSP_LED_On(LED3); }{ ... } /** * @brief UART error callbacks * @param huart: UART handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None *//* ... */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { /* Turn LED3 off: Transfer error in reception/transmission process */ BSP_LED_Off(LED3); }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */