Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private variables
Tab_Rx
Tab_Tx
ReceivedFrame
NbOfReceivedBytes
StartSending
TxSize
DestinationAddress
InitiatorAddress
TxStatus
hcec
Private function prototypes
main()
CEC_Config(CEC_HandleTypeDef *)
HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *)
HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *, uint32_t)
HAL_CEC_ErrorCallback(CEC_HandleTypeDef *)
CEC_FlushRxBuffer()
HAL_GPIO_EXTI_Callback(uint16_t)
SystemClock_Config()
Files
loading...
CodeScopeSTM32 Libraries and SamplesCEC_DataExchangeSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file CEC/CEC_DataExchange/Src/main.c * @author MCD Application Team * @brief This example describes how to configure and use the CEC through * the STM32F4xx HAL API. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup CEC_DataExchange * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ uint8_t Tab_Rx[CEC_MAX_PAYLOAD]; /* Received data buffer. Max size = 16 bytes * header + opcode followed by up to 14 operands *//* ... */ uint8_t Tab_Tx[CEC_MAX_PAYLOAD-1]; /* Transmitted data buffer. * header is not included in Tab_Tx. * Max size = 15 bytes. * one opcode followed by up to 14 operands. * When payload size = 0, only the header is sent * (ping operation) *//* ... */ uint8_t ReceivedFrame = 0x0; /* Set when a reception occurs */ uint16_t NbOfReceivedBytes = 0x0; /* Number of received bytes in addition to the header. * when a ping message has been received (header * only), NbOfReceivedBytes = 0 *//* ... */ uint8_t StartSending = 0x0; /* Set when a transmission is triggered by the user */ uint32_t TxSize = 0x0; /* Number of bytes to transmit in addition to the header. * In case of ping operation (only the header sent), * TxSize = 0 *//* ... */ uint8_t DestinationAddress = 0; /* Destination logical address */ uint8_t InitiatorAddress = 0; /* Initiator logical address */ __IO uint8_t TxStatus = 0; CEC_HandleTypeDef hcec; /* CEC IP handle */ Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void CEC_Config(CEC_HandleTypeDef *hcec); static void CEC_FlushRxBuffer(void);Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* This sample code shows how to use STM32F4xx CEC HAL API to transmit and * receive data. The device is set in waiting to receive mode and sends * messages when the evaluation board buttons are pushed by the user *//* ... */ /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* -1- Initialize LEDs mounted on EVAL board */ /* Configure LED1, LED2, LED3 and LED4 */ BSP_LED_Init(LED1); BSP_LED_Init(LED2); BSP_LED_Init(LED3); BSP_LED_Init(LED4); /* -2- Configure User push-button in Interrupt mode */ /* button-triggered interruptions initialization */ BSP_PB_Init(BUTTON_TAMPER,BUTTON_MODE_EXTI); /* -3- Configure Joystick Selection push-button in Interrupt mode */ BSP_JOY_Init(JOY_MODE_EXTI); /* CEC device initialization */ #if defined (DEVICE_1) DestinationAddress = 0x3; /* follower address */ InitiatorAddress = 0x1;/* ... */ #elif defined (DEVICE_2) DestinationAddress = 0x1; /* follower address */ InitiatorAddress = 0x3;/* ... */ #endif /* -4- CEC configuration (transfer will take place in Interrupt mode) */ hcec.Instance = CEC; /* Deinitialize CEC to reinitialize from scratch */ HAL_CEC_DeInit(&hcec); /* IP configuration */ CEC_Config(&hcec); /* -5- CEC transfer general variables initialization */ ReceivedFrame = 0; StartSending = 0; NbOfReceivedBytes = 0; CEC_FlushRxBuffer(); while (1) { /* if no reception has occurred and no error has been detected, * transmit a message if the user has pushed a button *//* ... */ while( (StartSending == 1) && (ReceivedFrame == 0)) { HAL_CEC_Transmit_IT(&hcec,InitiatorAddress ,DestinationAddress, (uint8_t *)&Tab_Tx, TxSize); /* loop until TX ends or TX error reported */ while (TxStatus != 1); StartSending = 0; }while ((StartSending == 1) && (ReceivedFrame == 0)) { ... } /* if a frame has been received */ if (ReceivedFrame == 1) { if (Tab_Rx[1] == 0x44) /* Test on the opcode value */ { /* Receive command is equal to Volume Up(Button Up) */ if (Tab_Rx[2] == 0x41) /* Test on the operand value */ { BSP_LED_On(LED1); BSP_LED_On(LED2); BSP_LED_On(LED3); BSP_LED_On(LED4); ...} else if (Tab_Rx[2] == 0x42) /* Receive command is equal to Volume Down(Button Down) */ { BSP_LED_Off(LED1); BSP_LED_Off(LED2); BSP_LED_Off(LED3); BSP_LED_Off(LED4); ...} ...} else if (Tab_Rx[1] == 0x46) /* Test on the opcode value */ { BSP_LED_On(LED1); BSP_LED_On(LED2); BSP_LED_Off(LED3); BSP_LED_Off(LED4); ...} else if (Tab_Rx[1] == 0x9F) /* Test on the opcode value */ { BSP_LED_Off(LED1); BSP_LED_Off(LED2); BSP_LED_On(LED3); BSP_LED_On(LED4); ...} ReceivedFrame = 0; CEC_FlushRxBuffer(); }if (ReceivedFrame == 1) { ... } else if (ReceivedFrame == 2) /* means CEC error detected */ { /* Turn on LED3 */ BSP_LED_On(LED3); ReceivedFrame = 0; ...} }while (1) { ... } }{ ... } /** * @brief Configures the CEC peripheral. * @param None * @retval None *//* ... */ static void CEC_Config(CEC_HandleTypeDef *hcec) { /* CEC configuration parameters */ #if defined (DEVICE_1) hcec->Init.OwnAddress = CEC_OWN_ADDRESS_1; #elif defined (DEVICE_2) hcec->Init.OwnAddress = CEC_OWN_ADDRESS_3; #endif hcec->Init.SignalFreeTime = CEC_DEFAULT_SFT; hcec->Init.Tolerance = CEC_STANDARD_TOLERANCE; hcec->Init.BRERxStop = CEC_NO_RX_STOP_ON_BRE; hcec->Init.BREErrorBitGen = CEC_BRE_ERRORBIT_NO_GENERATION; hcec->Init.LBPEErrorBitGen = CEC_LBPE_ERRORBIT_NO_GENERATION; hcec->Init.BroadcastMsgNoErrorBitGen = CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION; hcec->Init.SignalFreeTimeOption = CEC_SFT_START_ON_TXSOM; hcec->Init.ListenMode = CEC_REDUCED_LISTENING_MODE; hcec->Init.RxBuffer = Tab_Rx; HAL_CEC_Init(hcec); }{ ... } /** * @brief Tx Transfer completed callback * @param hcec: CEC handle * @retval None *//* ... */ void HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *hcec) { /* End of transmission */ TxStatus =1; }{ ... } /** * @brief Rx Transfer completed callback * @param hcec: CEC handle * @retval None *//* ... */ void HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *hcec, uint32_t RxFrameSize) { ReceivedFrame = 1; }{ ... } /** * @brief CEC error callbacks * @param hcec: CEC handle * @retval None *//* ... */ void HAL_CEC_ErrorCallback(CEC_HandleTypeDef *hcec) { ReceivedFrame = 2; }{ ... } /** * @brief Reset CEC reception buffer * @param None * @retval None *//* ... */ static void CEC_FlushRxBuffer(void) { uint32_t cpt; for (cpt = CEC_MAX_PAYLOAD; cpt > 0; cpt--) { Tab_Rx[cpt-1] = 0; }for (cpt = CEC_MAX_PAYLOAD; cpt > 0; cpt--) { ... } }{ ... } /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None *//* ... */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { uint32_t ITstatus = 0; JOYState_TypeDef JoyState = JOY_NONE; if(GPIO_Pin == TAMPER_BUTTON_PIN) { /* Toggle GREEN LED1 */ BSP_LED_Toggle(LED1); Tab_Tx[0] = 0x44; Tab_Tx[1] = 0x42; TxSize = 0x02; StartSending = 1; }if (GPIO_Pin == TAMPER_BUTTON_PIN) { ... } if(GPIO_Pin == MFX_IRQOUT_PIN) /* Interrupt received from MFX */ { /* The different functionalities of MFX (TS, Joystick, SD detection, etc. ) can be configured in exti mode to generate an IRQ on given events. The MFX IRQ_OUT pin is unique and common to all functionalities, so if several functionalities are configured in exit mode, the MCU has to enquire MFX about the IRQ source (see BSP_IO_ITGetStatus). Communication with Mfx is done by I2C. Often the sw requires ISRs (irq service routines) to be quick while communication with I2C can be considered relatively long (hundreds of usec depending on I2C clk). Considering that the features for human interaction like TS, Joystick, SD detection don�t need immediate reaction, it is suggested to use POLLING instead of EXTI mode, in order to avoid "blocking I2C communication" on interrupt service routines *//* ... */ ITstatus = BSP_IO_ITGetStatus(JOY_ALL_PINS); if (ITstatus) /* Checks if interrupt comes from joystick */ { /* Get the Joystick State */ JoyState = BSP_JOY_GetState(); if(JoyState == JOY_DOWN) { /* Toggle BLUE LED4 */ BSP_LED_Toggle(LED4); Tab_Tx[0] = 0x9F; TxSize = 0x01; StartSending = 1; }if (JoyState == JOY_DOWN) { ... } if(JoyState == JOY_SEL) { /* Toggle ORANGE LED2 */ BSP_LED_Toggle(LED2); Tab_Tx[0] = 0x46; TxSize = 0x01; StartSending = 1; }if (JoyState == JOY_SEL) { ... } if(JoyState == JOY_UP) { /* Toggle RED LED3 */ BSP_LED_Toggle(LED3); Tab_Tx[0] = 0x44; Tab_Tx[1] = 0x41; TxSize = 0x02; StartSending = 1; }if (JoyState == JOY_UP) { ... } ...} BSP_IO_ITClear(); ...} }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 2 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 2; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Activate the OverDrive to reach the 180 MHz Frequency */ ret = HAL_PWREx_EnableOverDrive(); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t* file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */