Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private macro
#define MASTER_BOARD
#define I2C_ADDRESS
#define MASTER_REQ_READ
#define MASTER_REQ_WRITE
Private variables
I2CxHandle
aTxBuffer
aRxBuffer
hTxNumData
hRxNumData
bTransferRequest
Private function prototypes
main()
Error_Handler()
SystemClock_Config()
HAL_I2C_ErrorCallback(I2C_HandleTypeDef *)
Buffercmp(uint8_t *, uint8_t *, uint16_t)
Flush_Buffer(uint8_t *, uint16_t)
Files
loading...
CodeScopeSTM32 Libraries and SamplesI2C_TwoBoards_AdvComITSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file I2C/I2C_TwoBoards_AdvComIT/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F4xx I2C HAL API to transmit * and receive data buffer with a communication process based on * IT transfer. * The communication is done using 2 Boards. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_HAL_Examples * @{ *//* ... */ /** @addtogroup I2C_TwoBoards_AdvComIT * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Uncomment this line to use the board as master, if not it is used as slave */ #define MASTER_BOARD #define I2C_ADDRESS 0x3E #define MASTER_REQ_READ 0x12 #define MASTER_REQ_WRITE 0x34 Private macro /* Private variables ---------------------------------------------------------*/ /* I2C handler declaration */ I2C_HandleTypeDef I2CxHandle; /* Buffer used for transmission */ uint8_t aTxBuffer[] = " ****I2C_TwoBoards advanced communication based on IT**** ****I2C_TwoBoards advanced communication based on IT**** ****I2C_TwoBoards advanced communication based on IT**** "; /* Buffer used for reception */ uint8_t aRxBuffer[RXBUFFERSIZE]; uint16_t hTxNumData = 0, hRxNumData = 0; uint8_t bTransferRequest = 0; Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength); static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength); static void Error_Handler(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED2 */ BSP_LED_Init(LED2); /*##-1- Configure the I2C peripheral #######################################*/ I2CxHandle.Instance = I2Cx; I2CxHandle.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; I2CxHandle.Init.ClockSpeed = 400000; I2CxHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; I2CxHandle.Init.DutyCycle = I2C_DUTYCYCLE_16_9; I2CxHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; I2CxHandle.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; I2CxHandle.Init.OwnAddress1 = I2C_ADDRESS; I2CxHandle.Init.OwnAddress2 = 0; if(HAL_I2C_Init(&I2CxHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); }if (HAL_I2C_Init(&I2CxHandle) != HAL_OK) { ... } #ifdef MASTER_BOARD /* Configure USER Button */ BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO); /* Wait for USER Button press before starting the Communication */ while (BSP_PB_GetState(BUTTON_KEY) == 1) { /* Toggle LED2 every 1sec */ BSP_LED_Toggle(LED2); HAL_Delay(1000); }while (BSP_PB_GetState(BUTTON_KEY) == 1) { ... } /* Wait for USER Button release before starting the Communication */ while (BSP_PB_GetState(BUTTON_KEY) == 0) { }while (BSP_PB_GetState(BUTTON_KEY) == 0) { ... } BSP_LED_Off(LED2); while(1) { /* Initialize number of data variables */ hTxNumData = TXBUFFERSIZE; hRxNumData = RXBUFFERSIZE; /* Update bTransferRequest to send buffer write request for Slave */ bTransferRequest = MASTER_REQ_WRITE; /*##-2- Master sends write request for slave #############################*/ do { if(HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&bTransferRequest, 1)!= HAL_OK) { /* Error_Handler() function is called in case of error. */ Error_Handler(); }if (HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&bTransferRequest, 1)!= HAL_OK) { ... } /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /* When Acknowledge failure occurs (Slave don't acknowledge its address) Master restarts communication *//* ... */ ...} while(HAL_I2C_GetError(&I2CxHandle) == HAL_I2C_ERROR_AF); /*##-3- Master sends number of data to be written ########################*/ do { if(HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&hTxNumData, 2)!= HAL_OK) { /* Error_Handler() function is called in case of error. */ Error_Handler(); }if (HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&hTxNumData, 2)!= HAL_OK) { ... } /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /* When Acknowledge failure occurs (Slave don't acknowledge its address) Master restarts communication *//* ... */ ...} while(HAL_I2C_GetError(&I2CxHandle) == HAL_I2C_ERROR_AF); /*##-4- Master sends aTxBuffer to slave ##################################*/ do { if(HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { /* Error_Handler() function is called in case of error. */ Error_Handler(); }if (HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK) { ... } /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /* When Acknowledge failure occurs (Slave don't acknowledge its address) Master restarts communication *//* ... */ ...} while(HAL_I2C_GetError(&I2CxHandle) == HAL_I2C_ERROR_AF); /* Update bTransferRequest to send buffer read request for Slave */ bTransferRequest = MASTER_REQ_READ; /*##-5- Master sends read request for slave ##############################*/ do { if(HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&bTransferRequest, 1)!= HAL_OK) { /* Error_Handler() function is called in case of error. */ Error_Handler(); }if (HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&bTransferRequest, 1)!= HAL_OK) { ... } /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /* When Acknowledge failure occurs (Slave don't acknowledge its address) Master restarts communication *//* ... */ ...} while(HAL_I2C_GetError(&I2CxHandle) == HAL_I2C_ERROR_AF); /*##-6- Master sends number of data to be read ###########################*/ do { if(HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&hRxNumData, 2)!= HAL_OK) { /* Error_Handler() function is called in case of error. */ Error_Handler(); }if (HAL_I2C_Master_Transmit_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)&hRxNumData, 2)!= HAL_OK) { ... } /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /* When Acknowledge failure occurs (Slave don't acknowledge its address) Master restarts communication *//* ... */ ...} while(HAL_I2C_GetError(&I2CxHandle) == HAL_I2C_ERROR_AF); /*##-7- Master receives aRxBuffer from slave #############################*/ do { if(HAL_I2C_Master_Receive_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aRxBuffer, RXBUFFERSIZE)!= HAL_OK) { /* Error_Handler() function is called in case of error. */ Error_Handler(); }if (HAL_I2C_Master_Receive_IT(&I2CxHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aRxBuffer, RXBUFFERSIZE)!= HAL_OK) { ... } /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /* When Acknowledge failure occurs (Slave don't acknowledge its address) Master restarts communication *//* ... */ ...} while(HAL_I2C_GetError(&I2CxHandle) == HAL_I2C_ERROR_AF); /* Check correctness of received buffer ##################################*/ if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,hRxNumData)) { /* Processing Error */ Error_Handler(); }if (Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,hRxNumData)) { ... } /* Flush Rx buffers */ Flush_Buffer((uint8_t*)aRxBuffer,RXBUFFERSIZE); /* Toggle LED2 */ BSP_LED_Toggle(LED2); /* This delay permit the user to see LED2 toggling */ HAL_Delay(25); }while (1) { ... } /* ... */#else while(1) { /* Initialize number of data variables */ hTxNumData = 0; hRxNumData = 0; /*##-2- Slave receive request from master ################################*/ while(HAL_I2C_Slave_Receive_IT(&I2CxHandle, (uint8_t*)&bTransferRequest, 1)!= HAL_OK) { }while (HAL_I2C_Slave_Receive_IT(&I2CxHandle, (uint8_t*)&bTransferRequest, 1)!= HAL_OK) { ... } /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /* If master request write operation #####################################*/ if (bTransferRequest == MASTER_REQ_WRITE) { /*##-3- Slave receive number of data to be read ########################*/ while(HAL_I2C_Slave_Receive_IT(&I2CxHandle, (uint8_t*)&hRxNumData, 2)!= HAL_OK); /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /*##-4- Slave receives aRxBuffer from master ###########################*/ while(HAL_I2C_Slave_Receive_IT(&I2CxHandle, (uint8_t*)aRxBuffer, hRxNumData)!= HAL_OK); /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /* Check correctness of received buffer ################################*/ if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,hRxNumData)) { /* Processing Error */ Error_Handler(); }if (Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,hRxNumData)) { ... } /* Flush Rx buffers */ Flush_Buffer((uint8_t*)aRxBuffer,RXBUFFERSIZE); /* Toggle LED2 */ BSP_LED_Toggle(LED2); }if (bTransferRequest == MASTER_REQ_WRITE) { ... } /* If master request write operation #####################################*/ else { /*##-3- Slave receive number of data to be written #####################*/ while(HAL_I2C_Slave_Receive_IT(&I2CxHandle, (uint8_t*)&hTxNumData, 2)!= HAL_OK); /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } /*##-4- Slave transmit aTxBuffer to master #############################*/ while(HAL_I2C_Slave_Transmit_IT(&I2CxHandle, (uint8_t*)aTxBuffer, RXBUFFERSIZE)!= HAL_OK); /* Before starting a new communication transfer, you need to check the current state of the peripheral; if it�s busy you need to wait for the end of current transfer before starting a new one. For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. *//* ... */ while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { }while (HAL_I2C_GetState(&I2CxHandle) != HAL_I2C_STATE_READY) { ... } }else { ... } }while (1) { ... } /* ... */#endif /* MASTER_BOARD */ }{ ... } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* Toggle LED2: error */ BSP_LED_On(LED2); HAL_Delay(500); BSP_LED_Off(LED2); HAL_Delay(500); while(1) { }while (1) { ... } }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follows: * System Clock source = PLL (HSI) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSI Frequency(Hz) = 16000000 * PLL_M = 16 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * PLL_R = 6 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSI Oscillator and activate PLL with HSI as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 0x10; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; RCC_OscInitStruct.PLL.PLLR = 6; if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); }if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { ... } /* Activate the OverDrive to reach the 180 MHz Frequency */ ret = HAL_PWREx_EnableOverDrive(); if(ret != HAL_OK) { while(1) { ; } }if (ret != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers *//* ... */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); }if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { ... } }{ ... } /** * @brief I2C error callbacks * @param I2cHandle: I2C handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None *//* ... */ void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *I2cHandle) { /** Error_Handler() function is called when error occurs. * 1- When Slave don't acknowledge it's address, Master restarts communication. * 2- When Master don't acknowledge the last data transferred, Slave don't care in this example. *//* ... */ if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF) { Error_Handler(); }if (HAL_I2C_GetError(I2cHandle) != HAL_I2C_ERROR_AF) { ... } }{ ... } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 *//* ... */ static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if ((*pBuffer1) != *pBuffer2) { return BufferLength; }if ((*pBuffer1) != *pBuffer2) { ... } pBuffer1++; pBuffer2++; }while (BufferLength--) { ... } return 0; }{ ... } /** * @brief Flushes the buffer * @param pBuffer: buffers to be flushed. * @param BufferLength: buffer's length * @retval None *//* ... */ static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength) { while (BufferLength--) { *pBuffer = 0; pBuffer++; }while (BufferLength--) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t* file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */